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Abstract Analog circuit verification lacks systematization and formalization. The ma-

jor weakness of todays verification flows is their uncertainty about verification coverage.

This contribution demonstrates how novel approaches can overcome this coverage prob-

lem by considering the complete analog state space for verification. An approach to

model checking proves the absence or existence of errors with respect to a machine-

readable property specification. By injecting particles into the continuous vector field

representing the state space of analog circuits and inspecting their simulated paral-

lel motion according to the circuit’s dynamics, another complete and therewith formal

verification approach is given. The application to a circuit example shows the feasibility

of both approaches.

1 Introduction

Due to the increasing system complexity and decreasing time to market, verification of

analog circuit designs has become a more and more crucial part of the design flow. While

formal verification methods are established in the digital domain, industrial analog

circuit design flows are lacking formal or at least formalized verification methodologies.

Analog circuit verification still depends on the designer’s experience and expertise

to manually define appropriate test benches for simulation-based design flows and to

select the right input signals in order to detect possible design errors. Driven by the

perennial demand for higher design efficiency, new approaches offering more automation

of the verification process are of vital importance.

This contribution describes two approaches to analog circuit verification that cover

the complete state space of the circuits and therewith are considered as formal verifi-

cation.
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2 Quantifying the Analog Verification Gap: Verification Coverage

There has been a significant progress in several areas of electronic design automation

(EDA) for analog circuits. Some complex tasks such as placement, sizing, and design

centering have been addressed by EDA-vendors, now being available as automated tools

which are fully integrated into the design flow. These tools are exploiting algorithmic

concepts which by far outperform manual approaches.

By contrast, the area of analog design verification is not systematically covered by

existing tools. While approaches to assertion-based simulation are emerging, which are

mainly automating previosly manual efforts, they are not targeting the fundamental

problem of analog circuit verification: verification coverage. Todays established com-

mon verification methodology is analyzing the circuit’s behavior by simulation using

test benches. Specification conformance is checked by performing several transient sim-

ulations with input signals which are considered representative for the future operating

conditions of the circuit. Although this approach to discover design errors has been

working for decades, redesigns have occurred frequently due to missing some critical

behavior of the circuit during simulation.

The approaches to formal verification of analog circuits have in common that they

target the verification coverage problem of user-defined transient simulations. Figure

1 illustrates the problem of conventional transient simulations not covering the com-

plete reachable state space of a circuit and summarizes the main characteristics of this

approach. In contrast, formal verification approaches cover the complete state space

of the circuit, resulting in absolute confidence concerning the verification results, with

the downside of requiring new verification paradigms.

Test Bench-based
Transient Simulation

Formal 
Verification

+ State of the Art
+ Established in industry
+ Matches designers‘ way

of thinking

- Incomplete coverage
- Search for errors
- Error detection ↔ experience

+ Complete coverage
+ Proof of correctness

- Not established
- Different way of thinking
- Complexity
- (Need for formal specification)

Fig. 1 Comparison of Verification by Testbench-based Transient Simulation and Formal Ver-
ification.
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3 State Space Representation

The key to the approaches of formal verification of analog systems presented in the

following is to create a state space representation of the circuit’s behavior. By applying

modified nodal analysis (MNA) to the circuit netlist, the circuit is represented by a

nonlinear first order differential algebraic equation (DAE) system

f(ẋ(t), x(t), u(t)) = 0. (1)

The state space is spanned by the input vector u(t) and the vector of the system vari-

ables xe(t), representing the energy-storing elements of the circuit, such as capacitances

and inductances.

For a better understanding of the state space representation, the transient response

for IL of a tunnel diode oscillator circuit, shown in Figure 2, is plotted over time in

Figure 3(a). For both system variables IL (y-axis) and VC (x-axis) of this circuit, the

transient response is plotted in Figure 3(b) in state space representation with transition

time implicitly shown with a color mapping. Figure 3(c) shows the complete discrete

vector field of the tunnel diode oscillator’s state space, which is defined by the system

variables’ derivatives ẋe(t).

Vin

R1 L1

D1 C1

Fig. 2 Schematic of tunnel diode oscillator circuit.

(a) (b) (c)

Fig. 3 Transient response of the oscillator’s system variable IL plotted over time (a). Transient
response of the two system variables IL and VC in state space representation (b). Vector field
representation of complete state space over IL and VC (c).

4 Model Checking

The objective of Model Checking is to check automatically whether or not specified

circuit properties meet the specification, written in a machine-readable specification
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language. For analog circuits, specifications are written in informal documents, de-

scribing the required operating performances of the circuit.

To apply model checking algorithms, the state space representation is transferred

into a discrete graph structure. Therefore, the continuous state space is divided into

hypercubes of homogeneous behavior by comparing length and angle of the system

variables’ derivatives ẋe(t). These derivatives also define the transition relation of the

hypercubes and the transition time. By considering each hypercube as a vertex of a

graph, connected according to the transition relation with the corresponding transition

times, a graph data structure is generated from this information. The vertices of the

graph are labeled with the state space variable values at the center of the corresponding

hypercube. Figure 4 illustrates the discrete modeling process, performed by the analog

modeling tool amcheck [1].

Fig. 4 Generation of a discrete model for nonlinear analog systems for model checking.

To the generated graph structure, analog model checking algorithms in conjunction

with a special Analog Specification Language (ASL) [2] are applied. Compared to

approaches using temporal logic specification [3,4], the number of verifiable circuit

properties such as Offset, Gain, CMRR, PSRR, Slew Rate, Overshoot, Startup Time,

Oscillation, and VCO Input Sensitivity is increased significantly.

4.1 Analog Specification Language

Up to now, property specification for formal verification approaches of analog circuits

was based on extended versions of temporal logics such as RTCTL [5] or CTL-AT

[6]. Due to its origin in temporal logics, CTL is not capable of offering a designer-

oriented specification methodology. In order to gain acceptance for formal approaches in
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analog verification, a new methodology of property specification is necessary. While the

Property Specification Language (PSL) [7] offered this step towards designer-oriented

specification in the digital domain, an approach to analog specification with PSL [8]

covers signal-based properties for assertion-based verification but is not designed for

describing properties of analog systems in the state space. The approach of Mixed-

Signal Assertions (MSA) [9] extends temporal logic specification with operations for

describing properties of mixed signal systems but again has not been designed for

analog state space specification.

ASL syntax is designed to be semantically deductive and therewith reduces the

time needed for understanding existing specifications. By providing the possibility of

creating parameterized macro functions involving a macro preprocessor, specification

code can be sourced out to macro libraries allowing encapsulation and reuse of specifi-

cation code. The application of ASL specifications and algorithms is not restricted to

state space models generated with the approach described in the preceding section, so

it can be adopted to other finite state machine-based modeling approaches like [10].

From the point of view of analog circuit developers, analog properties are repre-

sented by continuous physical values and their alteration over time. Thus, it is necessary

to select states by calculations on their state space parameter values. Whether a state

belongs to a set is decided by comparing the result of an arithmetic calculation to

a specified interval. Extended path operations abstract from the reachability analysis

concept of temporal logics and allow examination of more complex properties on paths

within state space. In table 1 the analog circuit properties specifiable with ASL com-

pared to the possibilities given by CTL-AT are summarized. Oscillation and startup

time properties are explained in the next sections in more detail.

The following subsection defines an Extended Backus Naur Form (EBNF) grammar

for the syntax of ASL with terminal symbols printed in bold capital letters. User-defined

variables are printed italic.

Table 1 Analog circuit properties specifiable and verifiable with ASL compared to CTL-AT.√
means fully specifiable and verifiable, (

√
) means verifiable only by manual iterative checking

of specified assumptions.

Circuit property ASL CTL-AT

Reachable Area
√ √

Offset
√

(
√

)
Gain

√
CMRR

√
PSRR

√
Slew Rate

√
(
√

)
Overshoot

√ √
Startup Time

√
Oscillation

√
(
√

)
VCO Input Sensitivity

√
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4.2 EBNF Grammar of ASL

ASL Specification :=

Spec Sequence QUIT; | QUIT;

Spec Sequence :=

Spec Expression | Spec Sequence Spec Expression

Spec Expression :=

| SETVAR Set Variable;
| NUMVAR Number Variable; | Set Variable = Set Expression;
| Number Variable = Number;
| FOR Set Expression ASSERT Set Expression;
| FOR Number ASSERT Interval;

CALCULATION Calc Name (”Calc Expression”);

Set Expression :=

ON Base Set Operation Set | Operation Set

Base Set :=

Elementary Set | Set Variable | State Space Variable Interval
| (Base Set) | NOT Base Set | Base Set AND Base Set
| Base Set OR Base Set

Operation Set :=

Elementary Set | Set Variable | State Space Variable Interval
| (Operation Set) | NOT Operation Set
| Operation Set AND Operation Set
| Operation Set OR Operation Set
| Operation Set Operation Set
| SELECT Operation Set
| Calc Name ( Parameter ) Interval
| VALUE ( State Space Variable ) Interval
| ASSIGN ( Number Variable, Assign Type )
| OSCILLATION | Temporal Logic Expression Operation Set
| DELTA COMPARE ( State Space Variable ) Interval FROM Operation Set TO Operation Set
| TRANSITION FROM Operation Set TO Operation Set

Elementary Set :=

ALL | STEADYSTATES

Interval :=

[Number, Number] | [< Number] | [<= Number] | [> Number] | [>= Number]

Temporal Logic Expression :=

Temporal Logic Operator Direction Operation Set
| ALWAYS Direction Operation Set UNTIL Operation Set
| A Direction Operation Set U Operation Set
| EXISTS Direction Operation Set UNTIL Operation Set
| E Direction Operation Set U Operation Set

Temporal Logic Operator :=

UNIVERSALLY | AG | EVENTUALLY | AF
| STAY | EG | REACH | EF

Direction :=

ε | FROM

Number :=

Floatingpoint Constant | Number Variable
| ( Number ) | Number Math Operator Number

Assign Type :=

MAX | MIN | AVERAGE | RANGE
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4.3 Semantics of ASL operations

In the following, a brief description of the semantics of the main ASL operations is

given.

value: With the operation value, a set of states can be selected on the whole state

space or on another set by a state space parameter constrained to a specified interval.

Algorithmically, for each state is decided whether it is included within the given

interval by a simple comparison of the actual value of the state space parameter and

the interval boundaries.

transition: Previous approaches to property specification of analog systems were di-

rectly derived from temporal logics and mostly perform some kind of reachability

analysis. Although CTL-AT operations are still possible in ASL, the abstract reach-

ability operation of ASL is called transition and selects states on paths between

two state areas. It determines the minimum, maximum, average, and the range of

the transition times detected on the transition paths. These values can be assigned

to numeric variables using the assign command. The sum of edge weights on a path

between two vertices i, j is defined as distance and is calculated by Dijkstra’s algo-

rithm either as shortest path or as longest path by inversion of the edge weights. A

pseudo-code definition is given as follows.

ON base_set TRANSITION FROM start_set TO dest_set{

for each vertex i in (start_set & base_set){

for each vertex j in (dest_set & base_set){

if (distance(i->j) < infinity){

add distance(i->j) to transition_times;

add vertices on path i->j to transition_set;}}}}

oscillation: The operation oscillation identifies states on cycles in state space and

calculates the coresponding oscillation period. The pseudo-code definition is given as

follows.

ON base_set SELECT OSCILLATION{

for each pair (i,j) of vertices in base_set{

if ((distance(i->j) < infinity) and

(distance(j->i) < infinity)){

add distance(i->j) + distance(j->i)

to oscillation_times;

add vertices on path i->j->i

to oscillation_set;}}}

delta compare: The operation delta_compare evaluates Δvalue
Δtime between all pairs of

consecutive states of detected paths within a given transition area. Hence, it is possible

to measure and verify the rate of change of a state space variable value over time on

paths.

calculation: By defining a calculation formula, a set of states can be selected by eval-

uating an arithmetic property on the state space parameter values of each considered

state. Additionally, the numerical calculation results can be used by following op-

erations. Algorithmically, the formula is calculated on the parameter values of each

state and therewith decided if it meets the given value constraint while recording the

determined calculation results.

steadystates: The operation steadystates returns the steady states of the state

space. For different input values, the corresponding DC operating points determine
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the set of steady states of the system. This set is directly identified by the discretization

process.

assign: The operation assign allows to assign a numerical value returned by another

ASL operation to a number variable. The possible values are minimum, maximum,

average, and range of the set of single values determined on a set of states.

assert: To complete the verification of a property, it is necessary to include assertions

in the specification code. For sets, the operation assert checks whether a given set

is the subset of the reference set. Numeric assertions check values determined during

the verification process with respect to a given interval.

4.4 Application to a Ring Oscillator Circuit

The example circuit illustrated in Figure 5 is a modified ring oscillator with an even

number of inverter stages and cross-coupling [11]. Due to the bridges β, this circuit will

α

α

α

α

ββββ

I II

III IV

Fig. 5 Modified ring oscillator with an even number of inverter stages and cross-coupling.

oscillate if there is a ratio α/β of the transistor sizes in the feedback chain to those of

the bridges within the interval [0.4, 2.0]. The crucial point of this circuit is its proneness

to initial conditions, avoiding it to oscillate when the α/β ratio reaches or exceeds the

interval boundaries. While several simulation runs for this critical transistor ratios with

random initial conditions can show perfect oscillation, particular initial conditions exist

which are preventing this circuit from oscillating.

A formal verification of the circuit using a property specification with the Analog

Specification Language (ASL) and the ASL-MCT model checking tool [2] was per-

formed. The ASL specification of the oscillation properties is given in Listing 1 and

when applied to the circuit model, for transistor ratio 1.0 no initial conditions violating

the oscillation behavior are existent. Figure 6(a) shows the vector field of the oscillation

area automatically detected by the ASL verification algorithms described in section 4.3

with an α/β ratio of 1.0 projected to the state space variables VI , VII , and VIII . The

initial state space model generation with 1970 states takes 54 seconds on a single core

of Pentium 4 D with a clock frequency of 2.8 GHz and 2 GB of RAM. The ASL model

checking algorithms run 3 seconds.

In contrast to the perfect oscillation with transistor ratio 1.0, Figure 6(b) shows a

larger area of vectors belonging to possible oscillations for transistor ratio 2.1. Hence,

for transistor ratio 2.1, initial conditions are detected for which the circuit will not run

into an oscillation. This area of bad initial conditions is illustrated in Figure 7.
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VI

VII
VIII

(a)

VI

VII

VIII

(b)

Fig. 6 Vector field representation of the oscillation area for transistor ratio α/β = 1.0 (a) and
for transistor ratio α/β = 2.1 (b).

VI

VII

VIII

Fig. 7 Vector field of initial conditions leading into the non-oscillating steady states for tran-
sistor ratio α/β = 2.1.

5 State Space Particle Simulation

By visualizing the vector field resulting from the state space sampling described in

section 3, the dynamic behavior of the system under investigation can be analyzed.

Vector field visualization is only possible with a restriction to 3 dimensions, while

state space dimensions of common analog circuits can vary between 2 and more than

4. Therefore, a selection of the main dimensions has to be made to project to the

3-dimensional view.

Particle simulation is a common approach for vector field visualization and mature

algorithms have been developed [12]. In contrast to a static approach such as line

integral convolution, time-dependent motion of the particles visualizes the transient

behavior of the circuit in an animation sequence.
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1 # Get the oscillation set

2 osci_set = select oscillation;

3

4 # Check if oscillation exists (bool. result to %has osci)

5 $set_is_not_empty(osci_set, %has_osci);

6

7 # Check if circuit has steady states (bool. result to %has steady)

8 $set_is_not_empty(steadystates,%has_steady);

9

10 # Assertion: %has osci shall be true

11 for %has_osci assert true;

12

13 # Assertion: %has steady shall be false

14 for %has_steady assert false;

15

16 # Which states lead into steady states?

17 into_steady = reach steadystates;

18

19 # Which states can reach osci set?

20 into_osci = reach osci_set;

21

22 # Which states run into steady states and not into the oscillation?

23 # These states are initial conditions that will never run into an

24 # oscillation, while states that are in the set into steady and in

25 # into osci can possibly run into steady states even if they can

26 # run into the oscillation area

27 bad_initial_conditions

28 = into_steady and not into_osci;

Listing 1 ASL specification for oscillator verification.

We consider a vector field V : R
n → R

n on which for the discrete set Q =

{q1, ..., qm} of m sample points qi in the state space, generated from equation 1, the

discrete vector field VD : Q → VD is defined:

VD(qi) =

j
vi|∃qi ∈ Q : vi =

∂qi

∂t

ff
(2)

In other words, the discrete vector field VD is represented by position vectors qi de-

termining the sample points in the state space and the direction vectors vi = VD(qi)

giving the motion direction and speed within V at position qi.

For the injected particles pi ∈ R
n, their tangent vector V (pi) = ∂pi

∂t has to be ap-

proximated with respect to the discrete vector field VD. Hence, a mapping is necessary

which assigns a nearest sample point qj ∈ Q to each particle pi ∈ P from the set of

particles P , as illustrated in Figure 8:

M(pi) =
˘
arg minqj∈Q||pi − qj ||2

¯
(3)

Therewith, for each particle pi, its next position can be calculated according to a time

step Δt and the nearest direction vector vj = VD(M(pi)):

pi(t + Δt) = pi(t) + vj · Δt (4)
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q1

q2

q3

v1

v2

v3

p1

Fig. 8 Determining nearest sample point q2 in state space for particle p1 within discrete
vector field VD.

When starting the particle simulation, an equally distributed amount of particles

is inserted into the vector field of the state space and for each particle, the nearest

vector regarding euclidean distance determines its direction and speed of movement as

stated above.

Algorithm 1 recapitulates the introduced particle simulation algorithm.

Algorithm 1: Particle Simulation Algorithm

while animation running do
foreach each particle pi in state space do

detect nearest sample point qj = M(pi) with respect to euclidean distance;
get direction vector vj = VD(qj);
pi.position = pi.position + vj · Δt

end

end

Each of the particles represents an independent simulation run with the starting

position indicating its initial condition. While the visualization is projected to a 3-

dimensional representation, the motion vector of the particles is calculated with full

dimensionality. Thus, the motion is determined by all dimensions of the state space,

revealing additional information exceeding the 3-dimensional plot.

For the tunnel diode oscillator circuit’s state space with two state space dimensions,

the particle animation is illustrated in four steps in Figures 9(a) to 9(d).

(a) (b) (c) (d)

Fig. 9 Particle simulation for tunnel diode oscillator circuit with increasing time from (a) to
(d).

For the ring oscillator circuit considered in section 4.4, a particle simulation has

been performed. As expected from the model checking results, for transistor ratio
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α/β = 1.0, a perfect oscillation is detected as illustrated in Figure 10(a). In contrast,

for transistor ratio α/β = 2.1, the particle simulation clearly reveals the two aggrega-

tion areas where the system reaches a steady state and will not oscillate when initial

conditions lead into this area as illustrated in Figure 10(b). These results match with

those of the model checking approach. In terms of runtime, the state space vector

field generation would take the same time as for model checking, but the model can

be reused once it is generated, so no additional time for vector field sampling was

consumed. The particle simulation for 5000 particles runs in real-time, allowing user-

interactive zooming and rotation of the visualization during the simulation.

VI

VII
VIII

(a)

VI

VII

VIII

(b)

Fig. 10 Particle simulation of the oscillator circuit’s dynamic behavior for transistor ratio
α/β = 1.0 (a) and for transistor ratio α/β = 2.1 (b).

6 Conclusions

In this contribution two analog verification approaches covering the complete state

space of the circuit under verification have been presented. A hidden design error of

a ring oscillator was detected by model checking algorithms incorporating a property

specification in the Analog Specification Language (ASL), as well as with a particle

simulation covering the complete state space dynamics of the circuit under verification.

In contrast to transient simulation, both approaches cover the complete state space of

the circuit under verification and hence are not depending on manual selection of

appropriate simulation test-benches for error identification. Future work will focus on

the investigation of how to apply the proposed algorithms to more complex circuits.
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