Verifying Analog Designs: Needs, Constraints and Future Challenges for Complex Analog Designs from Cells to System

FAC'09 – Grenoble – June 26th 2009

Philippe Raynaud Kenneth Bakalar

Outlook

- Analog design context
- Cell design paradigm going below 65nm
- SoC design paradigm going below 65nm
- R&D Directions

Analog design context

AMS IC's define today's killer products

- Most eye-catching features are supported by A/M-S IC's
 - Transceivers
 - **GSM**
 - W-CDMA
 - Bluetooth
 - WLAN
 - UMTS
 - WiFi
 - DC/DC converters
 - Power management IC's
 - **–** A/V amplifiers
 - Power amplifiers
 - LCD drivers
 - Motor driver
 - FM radio
 - Sensors
 - Flash memory
 - etc

Problems with AMS SoC Verification

Those who develop AMS SoC have 3 concerns which prevent them from sleeping well :

Will it be functionally correct ?

Will it be robust ?

Will it be reliable ?

Will it be functional ?

- **The end customer is waiting for a <u>working</u> prototype**
- Challenge : assemble and verify, in less than one month :
 - Analog/RF cells
 - 3rd-party HDL IP blocks
 - Embedded RAM
 - Custom logic
 - SV testbench

AMS vs. Digital Design Flows

- Analog designers are facing several bottlenecks
 - No automation available in
 - Synthesis
 - P&R
 - Formal verification
- Increased complexity:
 - Smaller geometries of submicron processes allows bigger designs with more functionalities
- Increased process variability:
 - Dramatically critical in submicron processes
- TTM is under pressure
- Consequence: Analog designer must increase productivity in
 - Cell design
 - System validation

Cell design paradigm going below 65nm

Analog Cell Functional Verification

Nominal

- SPICE simulations
- Waveform inspection
- Scripting

Worst case

- Voltage and temperature variations
- Process Corners

More Complex Simulations

- Systems becoming more complex require complex AMS cells with more functionalities
- Nanometer processes have more effects (stress, dispersion ...) that make design phase more complex.
- Analog IP validation requires post layout simulation for accuracy
 - **Reduction algorithms becoming critical**
- Analog IP validation cannot be done anymore with corner-based simulations
- Simulations getting more complex with Digital/Analog/RF interactions

Increasing Number of Simulations

- Because of all possible configurations, a huge number of simulations has to be managed
 - For example, LDO regulator characterization: 41,000 simulations during 1 week.
- Possibility to improve design productivity with a simulation manager
 - Netlist creation
 - **Simulation launch and distribution over the network**
 - Results post processing with Pass/Fail flags
 - Results synthesis in documentation
- MGC proposing a simulation manager tool (ICanalyst)

— Same LDO example takes now ½ day

Monte Carlo Simulation

- Monte-Carlo simulations are needed but simulation time explodes
 - **—** 100's of runs gives a rough guess on results
 - **20,000's runs needed for guaranteed tight accuracy**
 - Solution 1: Enhance MonteCarlo (proposed by MGC in ICanalyst & soon in Eldo)
 - QMC suites accelerate convergence (break N^{-1/2} rate)
 - Adaptive MC stops when prescribed accuracy is obtained
 - Incremental MC allows continuation of MC simulation (add more runs)
 - Solution 2: Modeling can be used for simple problems without discontinuity
 - Simulate sampled points to create a performance model
 - Run MC on the model
 - Can decrease the simulation time and get very accurate results with 20 000 (fast) MC runs from a model based on 100/150 simulations

SoC design paradigm going below 65nm

Approaches to AMS Verification

- Tightly linked analog + digital functions make system-level simulation mandatory
- Most frequent Mixed-Signal SoC errors are integration errors
 - Interconnect
 - Transposed buses
 - Control signals inverted
 - Un-tested operating modes
 - Multiple power domains

Problems to solve

- AMS SoC represents today multi-million transistors IC's with possibly few million analog
- Analog blocks representation is an issue:
 - Transistor → capacity problem, even with Fast-SPICE, makes simulation too slow
 - VHDL-AMS → investment in modeling needed, and still a little slow
 - VHDL-RN → equivalent in modeling investment, cannot capture all analog effects, simulate faster (pure digital simulation)
 - Solution: Checkerboard methodology to use the best accuracy compromise depending on which part of the design is activated by the test vector
 - **Critical cells: SPICE or Fast-SPICE**
 - Interacting cells: VHDL-AMS
 - Inactive cells : VHDL-RN or "level 0" VHDL-AMS
 - This is the solution developped by MGC (Questa ADMS)

Digital SoC validations

- Not just a digital simulator
- Complete set of methodologies is needed

Needs for AMS SoC validations

- Need to transpose some digital techniques to AMS design
 - Test Bench Automation
 - Access advanced SPICE components in the digital testbench as behavioral models:
 - **PWL source**
 - Loads
 - Measurement checkers
 - OVM/SVA: need for a SVA Analog
 - Participation in Accelera standardization committee
 - Absolute time definition
 - Result comparison including tolerance

Assertions and Safe Operating Area

- ABV (Assertion Based Verifications) detects bugs at the source, saving valuable debug time
- Analog designers use SOA to detect malfunctions
- Dynamic assertion technology for mixed-signal

R&D Directions

Conclusion

- Analog IP design needs productivity improvement in both cell design and SoC validation
- Process below 65nm remove capacity/functionality bottleneck but opens design complexity/validation issues
- R&D directions
 - Statistical simulation
 - Full SoC formal validation (ABV, SVA-A)
 - Simulation time speed-up
 - More efficient algorithms
 - Multi-threading

