Global Convergence of a Charge Pump PLL using Lyapunov Stability and Reachability

H.Asad, Kevin Jones

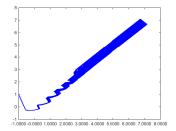
FAC Workshop, Grenoble France, July 9-10, 2014

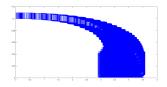
Outline

- Objective of the Research
- Lyapunov Analysis
- Set Advection
- Results
- Conclusion and Future Work

Objective of the Research

- Global Convergence of CP PLL is an important property.
- Hybrid System Modelling Paradigm.
- Use Reachability Computation
 - State space is divided in to patricians.
 - High Granularity is required.
 - Convergence to lock up condition is verified in bounded time.
- Several issues to this approach.
 - CP PLL needs hundreds of discrete transitions.
 - High number of reach set computations in additions to intersection with Guards.
 - Needs large Memory and computation resources.
 - Tools (StateEx,Flow) timed out during reachability computations.
- Proposed Solutions
- ► Lyapunov Stability+Reachability. Global Convergence of a Charge Pump PLL using Lyapunov Stability and Reachability



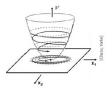


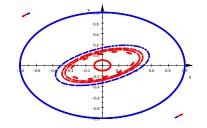
Generated by the tool Flow*

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

Lyapunov Stability

- $\dot{x} = f(x)$ $f: \mathbb{R}^n \to \mathbb{R}^n$
- Lyapunov analysis use an abstract energy like function proving Stability (Asymptotic Stability) .
- A function $V(x) : \mathbb{R}^n \to \mathbb{R}$ with $\dot{V}(x) = \langle \nabla V, f \rangle$
- V(x) > 0 and $-\dot{V}(x) > 0 \implies$ GAS
- Level sets described by the level curves of V are Invariant sets.





Invariant set around the equilibrium for CP PLL Hybrid System using Lyapunov Stability

- Hybrid system $\dot{x} = f_{\ell}(x), \quad \ell \in L = \{1, ..., N\}$
- $\mathcal{X}_{\ell} = \{ x \in \mathbb{R}^n : g_{\ell k} \ge 0, \text{ for } k = 1, ..., m_{\mathcal{X}_{\ell}} \text{ where } g_{\ell k} : \mathbb{R}^n \to \mathbb{R} \}.$
- $G(\ell, \ell') = \{x \in \mathbb{R}^n : h_{\ell\ell'0}(x) = 0, h_{\ell\ell'k}(x) \ge 0, \text{ for } k = 1, ..., m_{\mathcal{X}_{\ell}} \text{ where } h_{ijk} : \mathbb{R}^n \to \mathbb{R}\}.$
- $R(\ell,\ell')(x) = \psi_{\ell\ell'}(x)$
- Global Lyapunov Certificate: If $R(\ell, \ell')(x) = x$ and open set $S \subset \mathbb{P}^n$ such that $0 \in S$ let $V : S \to \mathbb{P}$ be a continuously function
 - $\mathcal{S} \subset \mathbb{R}^n$ such that $0 \in \mathcal{S}$ Let $V: \mathcal{S} \to \mathbb{R}$ be a continuously function such that
 - V(0) = 0 and V(x) > 0 for all $x \in S \setminus \{0\}$,
 - $\langle \nabla V, f_{\ell} \rangle \leq 0$ for all $x \in S, \ \ell \in L$
- x=0 is stable. If $\langle \nabla V, f_{\ell} \rangle < 0$, then AS.
- Such a global Lyapunov certificate is difficult to construct.
- Use Multiple Lyapunov Certificates Instead for each mode,
 - $V_{\ell}(0) = 0$ and $V_{\ell}(x) > 0$ for all $x \in \mathcal{X}_{\ell} \setminus \{0\}$,
 - $\langle \nabla V_{\ell}, f_{\ell} \rangle \leq 0$ for all $x \in \mathcal{X}_{\ell}, \ \ell \in L$
 - $V'_{\ell}(x') \leq V_{\ell}(x)$ for all $x \in G(\ell, \ell'), \ x' = R(\ell, \ell')(x)$
- Invariant set $\bigcup_{\ell} V_{\ell} \leq c$ for all $\ell \in L$ if $\bigcap_{\ell} \mathcal{X}_{\ell} = \emptyset$

Antonis Papachristodoulou et al. Robust Stability Analysis of Nonlinear Hybrid Systems.IEEE Transaction on Automatic Control 2009

Sum of Squares Programming

- Constructing Lyapunov certificate involves positivity test of V(x) and $-\langle \nabla V_{\ell}, f_{\ell} \rangle$
- Checking Positivity an NP-hard problem.
- Sufficient condition for p(x), p(x) = ∑_{i=1}^m p_i²(x) i.e. SOS decomposition.
- In Gram matrix form as $p(x) = Z^T(x)QZ(x)$, where Z(x) is a vector of monomials and Q is a positive semi-definite matrix.
- Positivity check Boils down to the search for a positive semi-definite matrix *Q* and semi-definite programming can be used for its construction.

Constructing Multiple Lyapunov functions using SOS Programming

• We convert the Lyapunov stability conditions as SOS constraints

$$V_{\ell}(x) - \sum_{k=1}^{m_{\mathcal{X}_{\ell}}} s \mathbf{1}_{\ell k}(x) g_{\ell k}(x) \text{ is SOS}$$
$$-\langle \nabla V_{\ell}, f_{\ell} \rangle - \sum_{k=1}^{m_{\mathcal{X}_{\ell}}} s \mathbf{2}_{\ell k}(x) g_{\ell k}(x) \text{ is SOS}$$
$$V_{\ell}(x) - V_{\ell}'(x') - \sum_{k=1}^{m_{\mathcal{X}_{\ell}}} s \mathbf{3}_{\ell \ell' k}(x) h_{\ell \ell' k}(x) - s \mathbf{4}_{\ell \ell' 0}(x, x') h_{\ell \ell' 0}(x) - s \mathbf{5}_{\ell \ell'}(x' - \psi_{\ell \ell'}(x)) \text{ is SOS } \forall \ell, \ell'.$$

- Here $s1_{\ell k}, s2_{\ell k}$, and $s3_{\ell \ell' k}$ are all SOS polynomials.
- Union/Intersection of the level sets of V_{ℓ} is an invariant set.

Level sets Intersection/Union

- Let $p, q \in \mathbb{R}[x]$, $\mathbb{R}[x]$ is ring of polynomials in x with real coefficients.
- Exists two sum of square polynomials, s_0 , s_1 ,

 $s_0 - s1q + p = 0 \quad \forall x \in \mathbb{R}^n$

Then Zero-Sub-level(q) \subset Zero-Sub-level(p).

- Given q and the degree bound of *p*, *s*₀, *s*₁, the set of coefficients of *p*, *s*₀, *s*₁ satisfying the above constraint is the feasible set of a semi-definite program.
- Using this lemma to find sets union/intersection of the candidate Lyapunov functions.
- if $V-\gamma \leq {\rm 0}$ is the desired zero level set, then we use an optimization using SOS programming,

maximize γ subject to $s_0 + s1p + \epsilon - (V - \gamma) = 0$,

 $s_0, \ s_1$ are SOS Polynomials, and $p \leq 0$ is the region of our interest.

Ta-Chung Wang et al. Polynomial level-set method for attractor estimation. Journal of the Franklin Institute 2012

Global Convergence of a Charge Pump PLL using Lyapunov Stability and Reachability

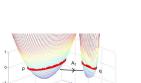
Set Advection to enlarge the Invariant Region around the equilibrium

- Reachability computations can be used to show convergence to the initial optimized invariant set.
- Instead, we use Set Advection to show that the Lyapunov invariant region is reachable from all states.
- In its simple form,

$$q = A_t p$$
 if $q(x) = p(\phi_t(x)) \ \forall x \in \mathbb{R}^n$

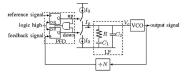
- If $q = A_t p$, then $Zero - Sub - level(q) = \phi_t(Zero - Sub - level(p))$
- In its simple form
 - $s1 s2q + B_{h-\alpha}p = 0$
 - $s3 + s4q B_h p = 0$

B_h is an approximation to the advection operator.

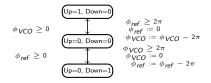


0 -0.5

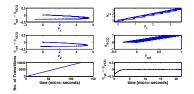
Charge Pump Phase Lock Loop as a Hybrid System



$$l_{P} = \begin{cases} \in [l_{P}^{U} l_{P}^{U}] & \text{UP=1, Down=0, } (0 \leq \phi_{VCO} < 2\pi \leq \phi_{ref}) \\ \in [l_{P}^{D} l_{P}^{D}] & \text{UP=0, Down=1, } (0 \leq \phi_{ref} < 2\pi \leq \phi_{VCO}) \\ \in [0^{R} \ 0^{R}] & \text{UP=0, Down=0, } (0 \leq \phi_{VCO}, \phi_{ref} < 2\pi) \end{cases}$$



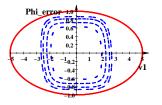
CP PLL Hybrid System



Simulations Plots of the CP PLL Hybrid System

- ϕ_{ref} , and ϕ_{VCO} do not converge to zero.
- We consider $\phi_{error} = \phi_{ref} \phi_{VCO}$ as an abstract state variable.
- Show stability of the equilibrium $\phi_{error} = 0$, v1(Voltage across C1) = 0, v2(Voltage across C2) = 0

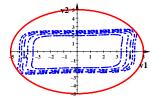
Multiple Lyapunov Certificates (Results)



Lyapunov function for Mode (Up=0, Down=0) in 3D

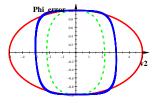
Lyapunov function for Mode (Up=1, Down=0) in 2D

Lyapunov function for Mode (Up=0, Down=1) in 2D

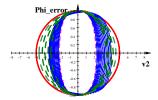


Level Curves of Lyapunov function (Degree 6) for Mode (Up=0, Down=0) Projected on v1-v2

Results



Initial Invariant Set Projected on v1- ϕ_{error}



Global Convergence Using Stability and Reachability Red := State Space Magenta := Initial Invariant Set Blue := Backward Advection Green := Forward Advection

- Time Taken by Multiple Lyapunov Computations = 862.0147 Seconds
- Time Taken by Intersection of functions = 120.3860 Seconds
- Time Taken by maximizing the Initial Invariant Set = 5.4132 Seconds
- Time Taken by forward Advection of sets = 350 Seconds (Approximately)
- Time Taken by Backward Advection of sets = 30 Seconds (Approximately)

- We have shown a solution to the problem of using only reachability for Global Convergence of the CP PLL.
- Results shows that Lyapunov based analysis has a great potential in AMS circuit verification.
- Though needs quite a bit of human interaction, SOS programming offers solutions to a range of problems .
- Robust Stability analysis can be done introducing additional inequalities and SOS multipliers.
- We are aiming to try and increase as much as possible the initial invariant set.
- We aim to extend the methodology to the safety verification of other complex circuits.

THANKS

Global Convergence of a Charge Pump PLL using Lyapunov Stability and Reachability H.Asad, Kevin Jones

14