## A Fast Wafer-Level Spatial Variation Modeling Algorithm for Test Cost Reduction of Analog/RF Circuits

Hugo Gonçalves<sup>1,2</sup>, Xin Li<sup>1</sup>, Miguel Correia<sup>2</sup> and Vitor Tavares<sup>2</sup> <sup>1</sup>ECE Department, Carnegie Mellon University, USA <sup>2</sup>Faculdade de Engenharia, Universidade do Porto, Portugal



09/07/2014

### Outline

### Motivation and background

Virtual probe (VP)

### Proposed approach

- Dual Augmented Lagrangian method (DALM)
- Two-pass test flow
- Experimental results

### Conclusions

### **Process Variation**



### Wafer Probe Test

Multiple test items must be measured for each die

### An industrial example of dual radio RF transceiver

- ~1 second testing time per die
- ~6500 dies per wafer
- ~ 2 hour testing time per wafer

### Measuring all test items is time-consuming





### **Test Cost Reduction by Spatial Variation Modeling**

Measure a small number of dies at selected spatial locations
 Recover the full wafer map by statistical algorithm



[Chang11], [Kupp12], [Huang13], [Hsu13], etc.

### List a set of linear equations based on measurement data



Results in an under-determined linear equation, since we have less measurements than unknown DCT coefficients

Additional information is required to uniquely solve underdetermined linear equation



Measured delay values (normalized) from 282 industrial chips DCT coefficients (sparse)

If process variations are spatially correlated wafer maps show sparse patterns in frequency domain

### Solve sparse DCT coefficients by L1-norm regularization

 DCT coefficients can be uniquely determined from a small number of measurements



**Linear regression problem:**  $\min_{\alpha} \quad \frac{1}{2} \cdot \left\| \mathbf{B} \cdot \boldsymbol{\alpha} - \mathbf{f} \right\|_{2}^{2} + \lambda \cdot \left\| \boldsymbol{\alpha} \right\|_{1}$ 

There is no closed-form solution

A standard interior-point solver is not computationally efficient

We aim to develop an application-specific solver to reduce computational time and, hence, testing cost

### Outline

- Motivation and background
   Virtual probe (VP)
- Proposed approach
  - Dual Augmented Lagrangian method (DALM)
  - Two-pass test flow
- Experimental results
- Conclusions

### **Dual Problem**

**Primal problem:** 
$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \cdot \left\| \mathbf{B} \cdot \boldsymbol{\alpha} - \mathbf{f} \right\|_{2}^{2} + \lambda \cdot \left\| \boldsymbol{\alpha} \right\|_{1}$$

Key idea: form a dual problem to reduce the number of unknowns

### Primal problem

**¬** # of unknowns = # of DCT coefficients  $\geq$  # of dies

### Dual problem

# of unknowns = # of measurements

Since we have substantially less measurements than unknowns, solving the dual problem is significantly more efficient

### **Strong Duality**



### **Dual Augmented Lagrangian**

Define an auxiliary variable z to form an equality constraint

#### **Dual problem**

Dual problem w/ equality constraint



$$\max_{\mathbf{x},\mathbf{z}} \quad D(\mathbf{x}) = -\frac{1}{2} \|\mathbf{x} - \mathbf{f}\|_{2}^{2} + \frac{1}{2} \|\mathbf{f}\|_{2}^{2}$$
  
S.T.  $\mathbf{z} = \mathbf{B}^{T} \mathbf{x}$   
 $\|\mathbf{z}\|_{\infty} \le \lambda$ 

Solve the augmented Lagrangian of the dual problem

$$\max_{\mathbf{x},\mathbf{z}} \quad L_A(\mathbf{x},\mathbf{z},\mathbf{\alpha}) = -\frac{1}{2} \cdot \|\mathbf{x} - \mathbf{f}\|_2^2 + \frac{1}{2} \cdot \|\mathbf{f}\|_2^2 + \mathbf{\alpha}^T \cdot (\mathbf{z} - \mathbf{B}^T \mathbf{x}) - \frac{\eta}{2} \cdot \|\mathbf{z} - \mathbf{B}^T \mathbf{x}\|_2^2 - \delta_\infty^\lambda(\mathbf{z})$$

$$\bigwedge^{\mathbf{rimal variable}} \delta_\infty^\lambda(\mathbf{z}) = \begin{cases} 0 & , \|\mathbf{z}\|_\infty \leq \lambda \\ +\infty & , \|\mathbf{z}\|_\infty > \lambda \end{cases}$$
size = # of DCT coefficients

#### **Augmented Lagrangian**

$$\max_{\mathbf{x},\mathbf{z}} \quad L_A(\mathbf{x},\mathbf{z},\boldsymbol{\alpha}) = -\frac{1}{2} \cdot \|\mathbf{x} - \mathbf{f}\|_2^2 + \frac{1}{2} \cdot \|\mathbf{f}\|_2^2 + \boldsymbol{\alpha}^T \cdot (\mathbf{z} - \mathbf{B}^T \mathbf{x}) - \frac{\eta}{2} \cdot \|\mathbf{z} - \mathbf{B}^T \mathbf{x}\|_2^2 - \delta_{\infty}^{\lambda}(\mathbf{z})$$

Solve optimization with alternating direction method [Yang10]

#### **Optimality conditions**

#### Variable update

$$\frac{\partial L_A\left(\mathbf{x}^{(k)}, \mathbf{z}, \mathbf{\alpha}^{(k)}\right)}{\partial \mathbf{z}} = 0 \qquad \mathbf{z}^{(k+1)} = P_{\infty}^{\lambda} \left(\mathbf{\alpha}^{(k)} / \eta + \mathbf{B}^T \mathbf{x}^{(k)}\right) \qquad \stackrel{P_{\infty}^{\lambda}(z)}{\longrightarrow} z$$
$$\frac{\partial L_A\left(\mathbf{x}, \mathbf{z}^{(k+1)}, \mathbf{\alpha}^{(k)}\right)}{\partial \mathbf{x}} = 0 \qquad \mathbf{x}^{(k+1)} = \left(\mathbf{I} + \eta \cdot \mathbf{B}\mathbf{B}^T\right)^{-1} \left(\mathbf{f} - \mathbf{B}\mathbf{\alpha}^{(k)} + \eta \cdot \mathbf{B}\mathbf{z}^{(k+1)}\right)$$

AL step  $\boldsymbol{\alpha}^{(k+1)} = \boldsymbol{\alpha}^{(k)} + \eta \cdot \left( \mathbf{B}^T \mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)} \right)$ 

$$\mathbf{x}^{(k+1)} = \left(\mathbf{I} + \boldsymbol{\eta} \cdot \mathbf{B}\mathbf{B}^T\right)^{-1} \left(\mathbf{f} - \mathbf{B}\boldsymbol{\alpha}^{(k)} + \boldsymbol{\eta} \cdot \mathbf{B}\mathbf{z}^{(k+1)}\right)$$

### Since DCT basis functions are used, we have

 $\mathbf{B}\mathbf{B}^T = \mathbf{I}$ 

Hence, we do not need to explicitly calculate matrix inverse

$$\mathbf{x}^{(k+1)} = \frac{1}{1+\eta} \cdot \left( \mathbf{f} - \mathbf{B} \boldsymbol{\alpha}^{(k)} + \eta \cdot \mathbf{B} \mathbf{z}^{(k+1)} \right)$$

### **Fast Matrix-Vector Multiplication**

$$\mathbf{z}^{(k+1)} = P_{\infty}^{\lambda} \left( \mathbf{\alpha}^{(k)} / \eta + \mathbf{B}^{T} \mathbf{x}^{(k)} \right)$$
$$\mathbf{x}^{(k+1)} = \frac{1}{1+\eta} \cdot \left( \mathbf{f} - \mathbf{B} \mathbf{\alpha}^{(k)} + \eta \cdot \mathbf{B} \mathbf{z}^{(k+1)} \right)$$
$$\mathbf{\alpha}^{(k+1)} = \mathbf{\alpha}^{(k)} + \eta \cdot \left( \mathbf{B}^{T} \mathbf{x}^{(k+1)} - \mathbf{z}^{(k+1)} \right)$$

Since DCT basis functions are used, we can calculate these matrix-vector multiplications by fast DCT or IDCT transform

### **Two-Pass Test Flow**

Measure all dies on one wafer if its spatial pattern cannot be predicted by a number of pre-selected dies



### **Error Estimation**

Modeling error by VP must be sufficiently small to ensure small escape rate and yield loss



expected values from training

f measured values from current wafer

Slide 18

### Outline

- Motivation and background
  - Virtual probe (VP)
- Proposed approach
  - Dual Augmented Lagrangian method (DALM)
  - Two-pass test flow
- Experimental results
- Conclusions

### **Experimental Setup**

#### Production test data of an industrial dual radio RF transceiver

- 9 lots and 176 wafers in total
- G766 dies per wafer and 51 test items per die test items were selected by [Chang11]
- 1,089,120 good dies and 101,696 bad dies

| Lot ID  | 1  | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9 |
|---------|----|---|----|----|----|----|----|----|---|
| Wafer # | 25 | 9 | 23 | 25 | 25 | 25 | 17 | 25 | 2 |

[Chang11]: H. Chang, K. Cheng, W. Zhang, X. Li and K. Butler, "Test cost reduction through performance prediction using virtual probe," ITC, 2011

### **Spatial Pattern Examples**

# Spatial pattern is observed for a subset of test items, but not all test items



### **Wafer Map Prediction**

#### Two different solvers are implemented for comparison purpose

- ▼ IPM: interior-point method
- DALM: dual augmented Lagrangian method

| Number of | IPM            | DALM           |             |          |  |  |
|-----------|----------------|----------------|-------------|----------|--|--|
| Dies      | Runtime (Sec.) | Runtime (Sec.) | Iteration # | Speed-up |  |  |
| 100       | 48.3           | 12.2           | 7027        | 3.96×    |  |  |
| 250       | 62.7           | 10.3           | 5664        | 6.07×    |  |  |
| 500       | 84.7           | 8.9            | 5083        | 9.52×    |  |  |
| 1000      | 119.9          | 8.1            | 4504        | 14.88×   |  |  |
| 2000      | 171.2          | 7.3            | 3922        | 23.56×   |  |  |
| 4000      | 255.2          | 6.7            | 3580        | 37.86×   |  |  |

DALM achieves up to 37× runtime speedup in this example

### Wafer Map Prediction

### IPM and DALM result in identical modeling errors



### Wafer Map Prediction

### IPM and DALM predict identical wafer maps



### **Test Cost Reduction**

### Total number of measured dies for each test item





■ Full ■ IPM ■ DALM

|                     | Full | IPM                  | DALM                 |
|---------------------|------|----------------------|----------------------|
| Overall test cost   | 60M  | 32M                  | 32M                  |
| Test cost reduction |      | 1.9×                 | 1.9×                 |
| Escape rate         |      | 1.2×10 <sup>-3</sup> | 1.2×10 <sup>-3</sup> |
| Yield loss          |      | 2.0×10 <sup>-3</sup> | 2.0×10 <sup>-3</sup> |

### Conclusions

- Reducing test cost is a critical task for nanoscale integrated circuit design and manufacturing
  - Virtual Probe (VP) is an efficient method for test cost reduction based on wafer-level spatial variation modeling
- Propose an efficient Dual Augmented Lagrangian method (DALM) to reduce the computational cost of VP
  - Achieve up to 37× runtime reduction over the conventional interior-point solver
- The proposed DALM solver can be further applied to a number of other analog CAD problems related to sparse approximation
  - E.g., analog performance modeling, analog self-healing, etc.

### References

- [Chang11]: H. Chang, K. Cheng, W. Zhang, X. Li and K. Butler, "Test cost reduction through performance prediction using virtual probe," ITC, 2011
- [Kupp12]: N. Kupp, K. Huang, J. Carulli and Y. Makris, "Spatial estimation of wafer measurement parameters using Gaussian process models," <a href="https://www.action.com">https://www.action.com</a> 2012
- [Huang13]: K. Huang, N. Kupp, J. Carulli and Y. Makris, "Handling discontinuous effects in modeling spatial correlation of wafer-level analog/RF tests," DATE, 2013
- [Hsu13]: C. Hsu, F. Lin, K. Cheng, W. Zhang, X. Li, J. Carulli and K. Butler, "Test data analytics - exploring spatial and test-item correlations in production test data," ITC, 2013
- [Yang10]: J. Yang and Y. Zhang, "Alternating direction algorithms for I1problems in compressive sensing," Technical Report, TR09-37, Rice University, 2010