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Wafer Probe Test 

 Multiple test items must be measured for each die 

 

 An industrial example of dual radio RF transceiver 

 ~1 second testing time per die 

 ~6500 dies per wafer 

 ~ 2 hour testing time per wafer 

 

 Measuring all test items is time-consuming 

~2h per wafer 
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Test Cost Reduction by Spatial Variation Modeling 

 Measure a small number of dies at selected spatial locations 

 Recover the full wafer map by statistical algorithm 

 

 

 

 

 

 

 

 

 

 

 [Chang11], [Kupp12], [Huang13], [Hsu13], etc. 
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Virtual Probe (VP) 

 List a set of linear equations based on measurement data 

Measured delay values (normalized) 
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Results in an under-determined linear equation, since we have 
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Virtual Probe (VP) 

 Additional information is required to uniquely solve under-

determined linear equation 

Measured delay values (normalized) 

from 282 industrial chips 
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wafer maps show sparse patterns in frequency domain 
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Virtual Probe (VP) 

 Solve sparse DCT coefficients by L1-norm regularization 

 DCT coefficients can be uniquely determined from a small 

number of measurements 
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Virtual Probe (VP) 

 

 

 

 There is no closed-form solution 

 

 A standard interior-point solver is not computationally efficient 

 

 We aim to develop an application-specific solver to reduce 

computational time and, hence, testing cost 

Linear regression problem: 
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Dual Problem 

 

 

 Key idea: form a dual problem to reduce the number of unknowns 

 

 Primal problem 

 # of unknowns = # of DCT coefficients  # of dies 

 

 Dual problem 

 # of unknowns = # of measurements 

 

 Since we have substantially less measurements than unknowns, 

solving the dual problem is significantly more efficient 

2

2 1
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α
B α f αPrimal problem: 
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Strong Duality 
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Dual Augmented Lagrangian 

 Define an auxiliary variable z to form an equality constraint 

 

 

 

 

 

 

 Solve the augmented Lagrangian of the dual problem 
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Alternating Direction Method 

 

 

 

 Solve optimization with alternating direction method [Yang10] 

 

 

 

 

 

 

 

 

 

Augmented Lagrangian 

     
22 2

2 2 2,

1 1
max , ,

2 2 2

T T T

AL 
            

x z
x z α x f f α z B x z B x z

    , ,
0

k k

AL




x z α

z

    1
, ,

0

k k

AL







x z α

x

        1 1 1k k k kT
  
   α α B x z

Optimality conditions Variable update 

z

)(zP






 )()()1( / kTkk P xBαz  

 

AL step 

   )1()(1)1(   kkTk
BzBαfBBIx 



Slide 15   

Fast Matrix Inverse 

 

 

 Since DCT basis functions are used, we have 

 

 Hence, we do not need to explicitly calculate matrix inverse 
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Fast Matrix-Vector Multiplication 

 

 

 

 

 

 

 Since DCT basis functions are used, we can calculate these 

matrix-vector multiplications by fast DCT or IDCT transform 
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Two-Pass Test Flow 

 Measure all dies on one wafer if its spatial pattern cannot be 

predicted by a number of pre-selected dies 
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Error Estimation 

 Modeling error by VP must be sufficiently small to ensure small 

escape rate and yield loss 
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Experimental Setup 

 Production test data of an industrial dual radio RF transceiver 

 9 lots and 176 wafers in total 

 6766 dies per wafer and 51 test items per die – test items were 

selected by [Chang11] 

 1,089,120 good dies and 101,696 bad dies 

[Chang11]: H. Chang, K. Cheng, W. Zhang, X. Li and K. Butler, “Test cost reduction through 

performance prediction using virtual probe,” ITC, 2011 

Lot ID 1 2 3 4 5 6 7 8 9 

Wafer # 25 9 23 25 25 25 17 25 2 
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Spatial Pattern Examples 

 Spatial pattern is observed for a subset of test items, but not 

all test items 
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Wafer Map Prediction 

 Two different solvers are implemented for comparison purpose 

 IPM: interior-point method 

 DALM: dual augmented Lagrangian method 

 

 

 

 

 

 

 

 

 DALM achieves up to 37 runtime speedup in this example 

Number of 

Dies 

IPM DALM 

Runtime (Sec.) Runtime (Sec.) Iteration # Speed-up 

100 48.3 12.2 7027 3.96 

250 62.7 10.3 5664 6.07 

500 84.7 8.9 5083 9.52 

1000 119.9 8.1 4504 14.88 

2000 171.2 7.3 3922 23.56 

4000 255.2 6.7 3580 37.86 
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Wafer Map Prediction 

 IPM and DALM result in identical modeling errors 
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Wafer Map Prediction 

 IPM and DALM predict identical wafer maps 

Actual wafer map Predicted wafer 

map by IPM 

Predicted wafer 

map by DALM 
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Test Cost Reduction 

 Total number of measured dies for each test item 

 IPM and DALM yield identical results 

Full IPM DALM 

Overall test cost 60M 32M 32M 

Test cost reduction  1.9 1.9 

Escape rate  1.2103 1.2103 

Yield loss  2.0103 2.0103 
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Conclusions 

 Reducing test cost is a critical task for nanoscale integrated 

circuit design and manufacturing 

 Virtual Probe (VP) is an efficient method for test cost reduction 

based on wafer-level spatial variation modeling 

 

 Propose an efficient Dual Augmented Lagrangian method 

(DALM) to reduce the computational cost of VP 

 Achieve up to 37 runtime reduction over the conventional 

interior-point solver 

 

 The proposed DALM solver can be further applied to a number 

of other analog CAD problems related to sparse approximation 

 E.g., analog performance modeling, analog self-healing, etc. 
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