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Outline

Integrating SMT with Theorem Proving for AMS Verification
P Contributions

Integrating SMT with Theorem Proving, challenges and solutions
Verifying global convergence of a Digital Phase-Locked
Loop(DPLL) using recurrence
Conclusion
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Contributions

Combine industrial strength SMT solver with industrial strength
theorem prover.
Model state-of-the-art DPLL with recurrences.
Proof of global convergence.
Able to prove design with parameter variation.
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Outline

Integrating SMT with Theorem Proving for AMS Verification
◦ Contributions
P Integrating SMT with Theorem Proving

I Why combine Z3 and ACL2?
I Software framework and technical challenges

Verifying global convergence of a Digital Phase-Locked
Loop(DPLL) using recurrence
Conclusion
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SMT and Theorem Proving - Z3

Satisfiability Modulo Theories (SMT) problem is a unified decision
procedure for logical formulas which combines solvers for a rich
set of background theories.
Possible theories: propositional logic, arithmetic, uninterpreted
functions, bitvectors theories etc.
Z3, Microsoft Research [MB08, JM12]. Non-linear arithmetic
theories, suitable for AMS design with non-linear dynamics.
Lack of:
I Induction proof
I Structured proof
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SMT and Theorem Proving - ACL2

Theorem proving is a technique for proving a set of theorems by
building upon a set of basic axioms and use of logic rules, e.g.
rewrite rules, induction.
In order to prove a final theorem, one looks at what is needed and
develops a set of lemmas.
ACL2, University of Texas at Austin.[KM97]
But working through complicated boolean formulas, systems of
inequalites, etc., can be extremely tedious.
ACL2 and Z3 complement each other:
I ACL2 provides structured proofs and induction proofs.
I Z3 discharges complicated/tedious systems of inequalities.
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SMT and Theorem Proving - clause processor

clauses returned by clause processor:

clause
processor kc1c

1c kcc2 c

clause from

ACL2

c 2c

A clause processor takes the goal one wants to prove and
decomposes the goal into a conjunction of subgoals. Each
subgoal is a called a clause.
ACL2 supports two kinds of clause processors:
I A verified clause processor is written in Lisp and proven

correct within ACL2.
I A trusted clause processor is anything else.

Theorems whose proofs rely on a trusted clause processor
are tagged accordingly.

We integrate Z3 into ACL2 as a trusted clause processor.
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Challenge: reals vs. rationals

clauses returned by clause processor:

clause
processor kc1cx,y,z. c(x,y.z)∀

clause from ACL2
1c kcc2 c(x,y,z)

2c

Challenge: ACL2 has rationals and Z3 has reals.
I In ACL2, ¬∃x . x2 = 2 is a theorem.
I In Z3, ∃x . x2 = 2 is a theorem.

Solution: only use Z3 to prove propositions where all variables are
universally quantified.
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Challenge: typed vs. untyped

c(x,y,z)

clause
processor kc1c

1c kc

2c

clauses returned by clause processor:

clause from ACL2

(implies (and (rationalp x)
(rationalp y)
(rationalp z))

(c x y z))

c2

Challenge: ACL2 is untyped but Z3 is typed.
Solution: user adds type assertions to antecedent.
I These are almost always needed anyways.
I This requirement is not a significant burden.
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Challenge: user defined functions

Expanded => Original

clause
processor kc1c

clause from

ACL2

c 2c

about recursive functions.
Validate user’s claims

Challenge:
I ACL2 supports arbitrary lisp functions.
I Z3 functions are more like macros (no recursion).

Solution:
I Set up translation for a basic set of functions.
I Expand non-recursive functions.
I Expand recursive functions to bounded depth.
I Expansion done on ACL2’s representation: can verify

correctness.
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Other issues:

Claims can contain non-polynomial terms.
I Replace offensive subexpression with a variable.
I User adds constraints about the variable.
I These constraints are returned as clauses for ACL2 to prove.

ACL2 may need hints to discharge clauses returned from the
clause processor.
I Solution: nested hints.
I These hints tell the clause processor what hints to attach to

returned clauses.
These features provides a very flexible back-and-forth between
induction proofs in ACL2 and handling the details of the algebra
with Z3.
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Example - the theorem

∀ a b γ ∈ R,m n ∈ Z .If 0 < m < n, 0 < gamma < 1.→
γm((a + b)2 − 2ab) ≥ γn · 2ab

1 (defun f-mul-2 (x) (f-mul 2 x))
(defun f-plus (x y) (+ x y))

3 (defun f-square (x) (f-mul x x))
(defun f-neg (x) (- x))

5 (defun f-minus (x y) (f-plus x (f-neg y)))
(defun f-expt (x n) (expt x n))
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Example - code

(defthm demonstration
2 (implies (and (and (rationalp a)

(rationalp b)
4 (rationalp gamma)

(integerp m)
6 (integerp n))

(and (> gamma 0)
8 (< gamma 1)

(> m 0)
10 (< m n)))

(>= (f-mul (expt gamma m)
12 (f-minus (f-square (f-plus a b))

(f-mul (f-mul-2 a) b)))
14 (f-mul (foo gamma n)

(f-mul (f-mul-2 a) b))))
16 :hints ...)
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Example - code

1 :hints
(("Goal"

3 :clause-processor
(my-clause-processor clause

5 ’( (:expand ((:functions ((f-mul rationalp)
(f-mul-2 rationalp)

7 (f-plus rationalp)
(f-square rationalp)

9 (f-neg rationalp)
(f-minus rationalp)

11 (f-expt rationalp)))
(:expansion-level 1))

13 (:python-file "demonstration")
(:let ((expt_gamma_m (expt gamma m) rationalp)

15 (expt_gamma_n (expt gamma n) rationalp)))
(:hypothesize ((< expt_gamma_n expt_gamma_m)

17 (> expt_gamma_m 0)
(> expt_gamma_n 0)))

19 (:use ((:type ())
(:hypo ())

21 (:main ()))))))))
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Outline

Integrating SMT with Theorem Proving for AMS Verification
◦ Contributions
◦ Integrating SMT with Theorem Proving
P Verifying global convergence of a Digital Phase-Locked

Loop(DPLL) using recurrence
I The state-of-the-art Digital PLL
I Establish recurrence model for the DPLL
I Prove global convergence using Z3 and ACL2

Conclusion
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A state-of-the-art Digital PLL (from CICC 2010)[CNA10]
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DCO has three control inputs:
capacitance setting (digital), supply voltage (linear), phase
correction (time-difference of digital transitions).
Uses linear and bang-bang PFD.
Integrators are digital.
LPF and decap to improve power-supply rejection.
It is impractical to verify global convergence using simulation.
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Establish the Recurrence Model

A limit cycle is an isolated closed
trajectory, for which its
neighbouring trajectories are not
closed they spiral either towards
or away from the limit cycle.

The recurrence model:
c(i + 1) = c(i) + g1sign(φ(i))

v(i + 1) = v(i) + g2(c(i)− ccode)

φ(i + 1) = (1− Kt )φ(i) + 2π
(

fdco(i)
Nfref

− 1
)

where fdco(i) = f0
1+αv(i)
1+βc(i)
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The proof: the big picture

Coarse convergence: from any initial condition, φ eventually
crosses 0 in a state where c and v are not saturated.
I Proof sketch:
I Use Ricatti equation to get a ranking function based on linear

model at convergence.
I Use this ranking function to show coarse convergence using

non-linear, global model.
I Z3 discharges all of the proof obligations.

Fine convergence: from any crossing of φ = 0 with c and v away
from their saturation conditions (as established above), φ will
continue to make zero-crossings that each move closer to the
intended equilibrium.
I Proof sketch: see the next few slides.
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The proof: fine convergence using induction proof
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Solve the recurrence (verified by ACL2 – rewrite & induction):
c(j) = c0 + g1j

φ(j) = γ jφ0 + 2π
j−1∑
i=0

γ(j−1−i)
(
µ

1 + αv
1 + βc(i)

− 1
)

We want to prove:
∀m ≥ 3, φ(2m − 1) < 0

A symmetric argument applies to lower half of the space.
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The proof
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Exploit the asymmetry between terms with c < ceq and c > ceq
where ceq is chosen to set fdco = fref .
I We pair up points to simplify the formula.
I Basic idea: the negative terms dominate the positive ones.

Proving these claims manually involves many pages of messy
algebra:
I Just have Z3 takes care of it.
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Conclusion

We’ve shown an integration of the Z3 SMT solver into the ACL2
theorem prover with applications for AMS verification.
Theorem proving is hard! Reachability is easy! Why use a
theorem prover?
I Reachability tools only solve parts of the problem. Human

reasoning is needed to conclude that the system works given
these partial results.

I Our formulation lets us work directly on the recurrences
rather than on continuizations:
� Can reason in detail about limit-cycle behaviour.

I We hope for “re-usable proofs.”
� Proof re-use has been very useful in the hardware

verification world.
� AMS verification seems amenable to the same approach:

there aren’t that many types of AMS blocks even though
there are many implementations.
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