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Abstract—In this paper we present a method to debug and
analyze large synthesized ANNs enabling a systematic comparison
of the transistor netlist, behavioral model and the implementation.
With that an insight into the behavior of the analog netlist is easily
gained and errors during generation or badly designed cells are
quickly uncovered. An overall judgement of the accuracy is also
presented. We demonstrate the functionality on several examples
from small ANNs to ANNs consisting of more than 10000 of cells
implementing a medical application.

I. INTRODUCTION

Analog neuronal networks (ANNs) may be a power
efficient alternative to digital inference engines. We focus
here on these kind of networks: [1] proposes a waferscale
implementation of analog neurons in a complex net structure.
[2] concentrates on resistor based matrix with about 4000
connections implementing a neural network with weights. In
recent work [3] proposes circuits with 512 spiking neurons
developed for inferencing tasks.

Given such a hardware-implemented big ANN, the following
debugging properties and challenges arise:
• It is a complex network consisting of thousands of signals,

being very slow in simulation.
• A reference model has to be extracted from the

TensorFlow model and converted to the signal
representation of the analog implementation which
can not be done manually.

• The analog neurons itself are sensitive to load conditions
and hence change the nonlinear behavior not only
depending on the values handled but also on the values
other connected neurons or weight cells compute.

• A complex error traversal and accumulation can occur
through the network, which is hard to follow with the
standard simulator output (waveforms over time).

In this paper we tackle these challenges and present a method
to debug such circuits systematically enabling bug finding. See
Fig. 1 for an overview of the ANN generation method and the
interface to the debugging framework.

II. PREVIOUS WORK

Inaccuracies for analog neural networks are analyzed in [4]
on a general basis. However it has more theoretical results
and incorporated these results into a TensorFlow description.
A detailed view on deviation of individual cells in individual
path and influence of load conditions is not handled. In [5]
a more general analysis and methodologies for retraining to
compensate for the loss due to inaccuracies is given.
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Fig. 1: Workflow of generation of analog neural net (ANN).

III. VERIFICATION METHODOLOGY

Our layer based ANN generation approach generates a top-
level schematic with all layers as symbols (see Fig. 1). From
that generated netlist we face the problem of verifying the
whole network. The following (incomplete) list gives some
impression about possible inaccuracies in the ANN:

1) Nonlinearities of transistor blocks, like current mirrors or
operational transconductance amplifiers (OTAs)

2) Leakage currents influencing the wanted signal in the pA
to nA range

3) Bit resolution
4) Accumulating errors in the bias-current delivery network
5) Process variations
6) Mismatch of devices
7) Parasitics: Handled by the extracted netlist
The case 3) can be handled by TensorFlow. Cases 5)-6) are

not examined in this paper, but have to be cared for in future
work. For all other cases a simple simulation of the overall
(extracted) network at the nominal point should do the job.
Unfortunately this simulation is expensive, as e.g. the ECG
example with 2,190 neurons and 13,179 weights will need 4



hours for calculating only the DC solution. Hence a different
strategy has to be developed.

For verification we first implemented behavioral models for
nearly each cell of the whole circuit and fit and compare them
to the transistor level implementation. Using these behavioral
models we can speed up the transient simulation by a factor
of ca. 20. However with these full behavioral simulations the
real accumulating errors from the transistor netlist will not be
verified. Therefore in the last step we need a transistor level
simulation and an analysis where errors are resulting from
thousands of signals. This is the motivation for developing a
debugging framework.

IV. DEBUGGING FRAMEWORK

For the purpose of comparison between a TensorFlow-
implementation of a neural network and the hardware-
implementation, we observe the output of weight-backends and
bias-cells and the input-values of the neuron-frontends as well
as the voltages between the neuron-frontends and the weight-
backends. On the TensorFlow-side of the comparison, we had
to extract the output values of every single layer of the neural
network.

The signals in our network switch from current domain
to voltage domain and back. This is considered by using a
linear mapping function from currents in the network to the
TensorFlow domain (50nA = 1(T f )) and a nonlinear mapping
between the internal voltages of the ReLU cells and the
Tanh cells to the TensorFlow domain using a piecewise linear
mapping function.

In Fig. 2 an overview of the implementation of the
debugging framework is given. The simulated data is pairwise
preprocessed. Differences and relative measures are calculated
and can be selected for displaying. To help find the source of
an error/deviation, the predecessors and successors of a given
cell can be highlighted. Very helpful are also statistical data
generated for the overall network, e.g. deviations at output of
weights binned to similar values.
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Fig. 2: Dataflow in debugging framework. The simulated data are compared
pairwise with the reference data from TensorFlow.

For the transistor and behavioral level implementation
a special feature to prevent wrong differences has to be
incorporated: If a ReLU front end is feeded with a negative
current, the voltage of that front end will drop and effectively
the current into that front end will never go substantially in the
negative range. As a result the feeding weights will not deliver
their intended currents leading to wrong measurements. Hence
these deviations are masked in the framework.

V. RESULTS

We applied the approach on three examples (see Tab. I): a
simple detector for peaks in a continuous signal, a detector
for audio signals and an arrhythmia detection for electro
cardiograms (ECG).

TABLE I: Examples with statistics, comparison of values at the output nodes
and accuracy of implementation

Example Peak det. Audio det. ECG det.
Statistics
Inputs 11 400 896
Layers 2 6 8
Neurons/weights 19/216 611/4k 2k/13k
Deviation at output nodes
TensorFlow ↔ behavioral
Mean squared error 8.8 ·10−10 2.9 ·10−3 9.6 ·10−6

Maxium absolute error 2.8 ·10−4 0.154 7.0 ·10−3

TensorFlow ↔ transistor netlist
Mean squared error 0.01 0.0007 0.0053
Maxium absolute error 0.38 0.08 0.107
Accuracy
TensorFlow 87.2% 96.0% 62.5%
behavior 87.2% 96.0% 68%
transistor netl. 72.4% 96.0% 50%

The entries of Tab. I are comparisons between the values
of the output node to the ideal TensorFlow implementation
as a reference. We compare the reference with behavioral
descriptions and transistor level implementations. Additionally,
we could also compare the implementations at every
intermediate layer with the debugging framework.

The use of the debugging framework on the ECG arrhythmia
detection example than reveals some bugs, because it has
the full network in focus. We fix the bugs by correcting the
schematic generator.

As a consequence, the comparison of the simulation results
of the netlist with behavioral models exhibits now nearly no
difference to the TensorFlow implementation, which was not
possible to reach without the complexity reduction due to the
debugging framework.

As a result of the debugging framework, the behavioral
implementation works as wanted for the audio detector and
the ECG detector. For the transistor level for the ECG the
debugging process shows, that errors are still accumulating.
Hence further investigations, changing the circuits and/or
calibration techniques are needed. The analysis for these steps
are available using the framework.
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