

Will Silicon Proof Stay the Only Way to Verify Analog Circuits?

Pierre Dautriche

Jean-Paul Morin

Advanced CMOS and analog

System On Chip (SOC) contents

• SoC made of :

- Array of standard cells
- Hard IP.

• Hard IP include :

- Fundation blocks such as Memories, Standard Cells and IO
- Complex mixed signal IP such as High Speed Serial and Parallel Interface.

IP development challenges

From AMS IP perspective, SoC Silicon success relies on :

- Agility to design IP (specs refinements, productivity, robustness,...)
- Matching between hard IP model and electrical characteristics
- Accuracy of models representing IP (stdcells, memories, hard IP,...) in digital flow
- Predictability of electrical characteristics

Full Custom Flow Ecosystem

life.augmented

Analog RF IP Design Flow - Summary

life.augmented

Analog design basic assumptions

Full custom design axiom You get what you simulate

- Analog designer will always concentrate on schematic improvement...
- Simulation predictability remains the fundamental of full custom design!

0 0

But....

Is full custom designer confident enough to commit on First Time Silicon Success?

Digital world : going further in Project Automation

Programming language or symbolic representation of hard macro

Hierarchical view with macro function

EDA tools have enabled SoC design hidding technology complexity by high level of abstraction and use of macro models.

Binary coding and Bolean description were key ingredients.

Synthesis based on Standard Cell libraries and Memory model

10

Digital world : programming language and scripts

Full custom world... a device world

Full custom design relies on a very large database of proven schematics which are adapted to Si process specificities.

Key enablers for fast and predictable solutions are model predictibility and simulator speed.

Snapshot of Si experience in 28nm node

ІР Туре	Problem Description	Product Impact
FUSE	IP not working at nominal value but below vdd min	Blocking, functionnality issue
FUSE	Degradation of bit reading efficiency	Relability issue
High Speed Interface	High Speed Link Loopback failures	DFT issue
High Speed Interface	Skew between input signals leading to high BER	Performance limitation
Ю	Very high loading leads to high transient consumption and bump on the supply	Performance limitation
Ю	Input Leakage around +200uA observed at IO pins where internal pull-up/pull-down is enabled causing external on board pull-up or pull-down not to work	Performance limitation
IO	IO Compensation block out of spec	Blocking, functionnality issue
ADC	If complementary input is applied at two channels of ADC then the performance of input-2 is degrading.	Performance limitation
ADC	With active high impedance input of channel-I of DAC, the output of channel-Q is also in high impedance mode.	Blocking, functionnality issue
DDR	DFI Init start not working	Blocking, functionnality issue
DDR	Non functional behaviour at low fequency	Performance limitation
Power Management	Power switch not working in certain power supply configuration	Performance limitation
Power Management	Internal voltage reference out of spec	Performance limitation
Power Management	Output voltage limitation	Performance limitation

Performance limitation is major consequence of non performing AMS IP

• Missing functionality still remains a major issue

Root cause analysis

ІР Туре	Root cause analysis
FUSE	Functional simulation coverage
FUSE	Fab dependence, sense amplifier sensitivity
High Speed Interface	Functional simulation coverage
High Speed Interface	User specification definition
IO	Use case not covered
Ю	Use case not covered
IO	IR drop
ADC	Cross talk
ADC	Functional simulation coverage
DDR	Functional simulation coverage
DDR	Use case not covered
Power Management	Use case not covered
Power Management	Electromigration
Power Management	Connection through well

• Specification definition and use case description is the main root cause of failure.

• Functional and performance simulation coverage is consquently the second cause of failure

AMS IP Verification - Challenges 15

Specification definition

Tests definitions / execution

Block abstraction

Pb0 : Functional specs definition

16

Need to change cultural approach for analog design community :

- Move from "bottom-up" approach to "top-down" approach
- Develop "user friendly" tools

AMS IP Verification - Challenges 17

Tests definitions / execution

Pb1 : Tests definitions / execution

18

Need to build theories/methodologies to :

- Transfer functional specifications into test benches and stimuli
- To emulate fault vector/benches to cover unexpected events

Pb 2 : Simulation time and models

Test vector and test benches usage :

- Netlist simulation are often inadequate to cover the full set of test benches and stimuli
- Higher level of abstraction is requested to be able to insure sufficient test coverage

Pb2 : block abstraction 20

- Purpose of the model : timing , power, thermal, functional,...
- Validity domain: certification & check
- Functional / Failure mode
- Process / Environment variability

At which **confidence level** can we guarantee the equivalence between the behavioral model and the transistor view ?

Pb3 : Check and monitor

- Dynamic checks during simulation:
 - Reliability checks / Operating regions
- Formal waveform analysis
- Comparison with specifications
- 🙁 Lack of standard language
- Adoption by EDA industry (market share?)
- 8 Reluctance to change by design community
- Observe the server of the serv

Standardization of pass/fail criteria in ad equation with functionnal and performances specification and test vector generation Analog VIP development for standard based AMS IP (USB, HDMI, PCIe,...)

Analog verification : moving ahead

Analog community cultural change :

- Moving from "bottom-up" approach to "top-down" approach
- Development of tool friendly approach

Standardization approach :

- Translation of electrical parameters into stimuli generation
- Develop of analog VIP for standard based IP

Modelisation :

- Requirement of Mathematical approach to increase level of abstraction
- Formal proof of mathematical model versus IP netlist

Metrics :

- Definition of metrics for verification coverage
- Evaluation of sensitivity and risk analysis

22

While Si validation remains the today practice, predictability and verification of analog IP is becoming a must..... let's address it!!

