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Digitally Intensive Analog Circuits

o Digitally intensive analog circuits attempt to replace analog
components with digital ones whenever possible.

VCO (LC)
DLF s DAC
out
REFCLK DPD ¢ TDC
Verilog Verilog
(synthesizable) (non—synthesizable)

@ Result is optimized power efficiency and performance as well as
improved robustness to process variability.

@ These circuits though further complicate the verification problem.
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Simulation-Based Verification

Digital verification typically uses switch or RTL-level simulations.

AMS verification uses detailed transistor-level (SPICE) simulations.

o
o
@ SPICE simulation of a PLL can take weeks or even months.
@ Long simulation time makes system-level simulation difficult.
o

Functional bugs can be missed resulting in catastrophic failures.
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Analog Verification

If the digital designers did
verification the way analog
designers do verification, no
chip would ever tape out.
(DACezine, January 2008)

Sandipan Bhanot
CEO of Knowlent
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Model Checking

@ Model checking uses non-determinism and state exploration to
formally verify designs over all possible behaviors.

@ Has had tremendous success for verifying of both digital hardware and
software systems (now routinely used at Intel, IBM, Microsoft, etc.).

@ For AMS circuits, it is a promising mechanism to validate designs in
the face of noise and uncertain parameters and initial conditions.

@ AMS verification is complicated by the need to:

e Construct abstract formal models of the AMS circuits.
e Specify formal properties that are to be verified.
o Represent continuous variables efficiently (voltages, currents, and time).
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@ Has had tremendous success for verifying of both digital hardware and
software systems (now routinely used at Intel, IBM, Microsoft, etc.).

@ For AMS circuits, it is a promising mechanism to validate designs in
the face of noise and uncertain parameters and initial conditions.

@ AMS verification is complicated by the need to:

o Construct abstract formal models of the AMS circuits. (FAC 2011)
o Specify formal properties that are to be verified. (FAC 2013)
e Represent continuous variables efficiently (voltages, currents, and time).
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Zones

@ Used for formal verification of timed automata and time(d) Petri nets.

@ Simple geometric polyhedra formed by the intersection of
hyper-planes representing inequalities of the form y — x < c.

@ Implies polyhedra with only 0°, 90°, and positive 45° angles.

@ For timed systems, all variables evolve at a rate of 1, and zone evolves
along a positive 45° angle.

@ Algorithms to restrict, project, and advance time are fast and simple.

@ Can use Floyd's all pairs shortest-path algorithm to construct a
canonical maximally tight representation.

o Conveniently represented using a difference bound matrix (DBM).
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Zone Warping

To verify AMS circuits, need variables that evolve at non-unity rates.
Zones can be used with a variable substitution.

Replace variable v with non-zero rate r with a variable 7.

The new variable 7 evolves at a rate of 1.

Resultant polyhedra is no longer a zone.

Warping creates the smallest zone that contains it.

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Positive Zone Warping
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Positive Zone Warping
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Positive Zone Warping
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Negative Zone Warping
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Negative Zone Warping
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Negative Zone Warping
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Negative Zone Warping: False Negative
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Negative Zone Warping: False Negative
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Octagons

@ Extension of zones that allow negative 45° degree angles.

<
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Octagon DBM

@ Can be represented using a DBM (Mine, 2001) and manipulated with
efficient algorithms.
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Octagon DBM

@ Can be represented using a DBM (Mine, 2001) and manipulated with
efficient algorithms.
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Reachability Analysis Using Octagons

@ Utilized for software checking, and efficient restriction, projection, and
constraint tightening algorithms have been developed.

o New algorithms are needed to add new continuous variables, advance
time, and warp the octagon.
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Adding Variables to Octagons

@ Adding new continuous variables and clocks is simply a matter of
re-interpreting the algorithms for zones in the language for octagons.

@ When adding a continuous variable v with rate r, the maximum and
minimum values for v are divided by r and added to the DBM (after
multiplying by 2).

@ Relational entries are set to infinity, indicating no relationship.
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Octagon Time Advancement

@ Extend the octagon along the 45° lines.

@ For zones, to advance time, simply set the upper bounds for all the
variables to the maximum allowed value before an event occurs.

o For octagons, —45° line slicing the upper right hand corner has a
limiting effect on the upper bounds of the two variables involved.

@ Entries associated with inequalities y + x < ¢ must also be set to
their maximum allowed value in relation to the maximums of x and y.

<
<

B N ]
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Octagon Warping

L4
r

@ Again replace every variable v by £ where r is the rate of v.

@ Replace resulting polyhedra with smallest octagon that contains it.

@ Accomplished by using a few algebraic equations that determine
where the new axis intercepts are in terms of the old intercept values.
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Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

_ e W s e o~
|
\

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Octagon Example

Fisher / Myers (U. of Utah) Octagons FAC 2014 / July 9, 2014



Comparison with Zones
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False Negatives

@ Octagons do not eliminate the possibility of false negatives even in
the case where rates are only +1.

@ Time advancement also introduces a degree of over-approximation,
related to the negative 45° lines.

@ Advancement in three dimensions of one of these negative 45° line
segments belongs to a plane of the form ax + by + cz = d.

@ The bounding hyper-planes are of the form £v; & v; < ¢ and not able
to capture this plane produced by advancing time.
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False Negative Example
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False Negative Example
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LEMA: LPN Embedded Mixed-Signal Analyzer
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Octagon DBM

y
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{true} e
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Octagon DBM
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{true}
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Octagon DBM

t0
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Octagon DBM
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Octagon DBM
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Octagon DBM
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Octagon DBM

t0 e
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Octagon DBM
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Octagon DBM
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Octagon DBM
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Octagon DBM
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Octagon DBM

{true}
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Octagon DBM
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Octagon DBM
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Octagon DBM
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