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~ Dual Augmented Lagrangian method (DALM)
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Wafer Probe Test

m Multiple test items must be measured for each die

m An industrial example of dual radio RF transceiver
< ~1 second testing time per die
N ~6500 dies per wafer
N ~ 2 hour testing time per wafer

m Measuring all test items is time-consuming

~2h per wafer
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Test Cost Reduction by Spatial Variation Modeling

m Measure a small number of dies at selected spatial locations
m Recover the full wafer map by statistical algorithm
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m [Changll], [Kuppl2], [Huangl3], [Hsul3], etc.
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Virtual Probe (VP)

m List a set of linear equations based on measurement data
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Results in an under-determined linear equation, since we have
less measurements than unknown DCT coefficients
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Virtual Probe (VP)

m Additional information is required to uniquely solve under-
determined linear equation
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If process variations are spatially correlated
wafer maps show sparse patterns in frequency domain
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Virtual Probe (VP)

m Solve sparse DCT coefficients by L1-norm regularization

N DCT coefficients can be uniquely determined from a small
number of measurements

DCT basis function
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Virtual Probe (VP)

Linear regression problem: min % |B-a- f||§ + A+,

m There is no closed-form solution
m A standard interior-point solver is not computationally efficient

m We aim to develop an application-specific solver to reduce
computational time and, hence, testing cost
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Dual Problem

Primal problem: m(jn %-”B'ﬂ —f||§ +/1‘||0‘||1

m Key idea: form a dual problem to reduce the number of unknowns

m Primal problem
< # of unknowns = # of DCT coefficients > # of dies

m Dual problem
< # of unknowns = # of measurements

m Since we have substantially less measurements than unknowns,
solving the dual problem is significantly more efficient
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Strong Duality
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Dual Augmented Lagrangian

m Define an auxiliary variable z to form an equality constraint

Dual problem Dual problem w/ equality constraint
1 > 1, .2
max  D(X) == [x—F[+ 2 max D) == [x=fl,+ ]
ST. z=B'x

ST. HBTwa <A

m Solve the augmented Lagrangian of the dual problem

max LA(X,Z,a):—%-”x—f”z+%-||f||§+aT°(Z—BTX)—g-HZ—BTtz—5;}(2)
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Alternating Direction Method

Augmented Lagrangian

max LA(X,Z,a):—%-”x—fnz+%-||f||§+aT-(Z—BTX)—g-”Z—BTX”z—5;1(2)

m Solve optimization with alternating direction method [Yang10]

Optimality conditions Variable update
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Fast Matrix Inverse

x® D = (1+7-BB" ' (f -Ba® +7-Bz*?)

m Since DCT basis functions are used, we have
BB' =1
m Hence, we do not need to explicitly calculate matrix inverse

S (k+D) 1 -(f—Bu(k)+77-BZ(k+l))
1+7
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Fast Matrix-Vector Multiplication

m Since DCT basis functions are used, we can calculate these
matrix-vector multiplications by fast DCT or IDCT transform
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Two-Pass Test Flow

predicted by a number of pre-selected dies

m Measure all dies on one wafer if its spatial pattern cannot be

Pre-test analysis
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Test cost reduction
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Measure all dies for all
following wafers

Determine pass/fail by
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Measure all dies

Slide 17



Error Estimation

m Modeling error by VP must be sufficiently small to ensure small
escape rate and yield loss

0 df(f | f') Escape Rate Yield Loss

lb f ub Ib f ub

ER= [pdf(f,F)df -of YL=[pdf(f,f)df -df
Poubo e

f expected values from training  f measured values from current wafer Slide 18
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Experimental Setup

m Production test data of an industrial dual radio RF transceiver
w9 lots and 176 wafers in total

N 6766 dies per wafer and 51 test items per die — test items were
selected by [Changl1]

« 1,089,120 good dies and 101,696 bad dies

llnnnnn-nn

Wafer# 25

[Chang11]: H. Chang, K. Cheng, W. Zhang, X. Li and K. Butler, “Test cost reduction through
performance prediction using virtual probe,” ITC, 2011
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Spatial Pattern Examples

m Spatial pattern is observed for a subset of test items, but not

all test items
100

60 RS SRS 2 60k
EE.;:_ I: .':.:';_r. e :- :.;_:a.:.-'. .-:- L : ¥ i f’

T '; i L
= ‘I-|.-_'_'|.-:"_-_.

Y AXIS

20 40 60 80 20 40 60 80
X AXIS X AXIS

0.5

Y AXIs
(@))
(@»)

o

20 40 60 80 20 40 60 80
X AXIs X AXis
Test item #1 Test item #48

Slide 21



Wafer Map Prediction

< DALM: dual augmented Lagrangian method

Number of m DALM

Dies

m Two different solvers are implemented for comparison purpose
N IPM: interior-point method
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m DALM achieves up to 37x runtime speedup in this example
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Wafer Map Prediction

m |[PM and DALM result in identical modeling errors
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Wafer Map Prediction

m IPM and DALM predict identical wafer maps
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Test Cost Reduction

m Total number of measured dies for each test item

“ IPM and DALM yield identical results
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Test cost reduction — 1.9% 1.9%
Escape rate — 1.2x10-3 1.2x10-3
Yield loss — 2.0x10°3 2.0x10-3
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m Reducing test cost is a critical task for nanoscale integrated

circuit design and manufacturing

 Virtual Probe (VP) is an efficient method for test cost reduction
based on wafer-level spatial variation modeling

m Propose an efficient Dual Augmented Lagrangian method
(DALM) to reduce the computational cost of VP

~ Achieve up to 37x runtime reduction over the conventional
interior-point solver

m The proposed DALM solver can be further applied to a number
of other analog CAD problems related to sparse approximation
< E.g., analog performance modeling, analog self-healing, etc.
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