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Wafer Probe Test 

 Multiple test items must be measured for each die 

 

 An industrial example of dual radio RF transceiver 

 ~1 second testing time per die 

 ~6500 dies per wafer 

 ~ 2 hour testing time per wafer 

 

 Measuring all test items is time-consuming 

~2h per wafer 
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Test Cost Reduction by Spatial Variation Modeling 

 Measure a small number of dies at selected spatial locations 

 Recover the full wafer map by statistical algorithm 

 

 

 

 

 

 

 

 

 

 

 [Chang11], [Kupp12], [Huang13], [Hsu13], etc. 
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Virtual Probe (VP) 

 List a set of linear equations based on measurement data 
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Virtual Probe (VP) 

 Additional information is required to uniquely solve under-

determined linear equation 

Measured delay values (normalized) 

from 282 industrial chips 
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Virtual Probe (VP) 

 Solve sparse DCT coefficients by L1-norm regularization 

 DCT coefficients can be uniquely determined from a small 

number of measurements 
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Virtual Probe (VP) 

 

 

 

 There is no closed-form solution 

 

 A standard interior-point solver is not computationally efficient 

 

 We aim to develop an application-specific solver to reduce 

computational time and, hence, testing cost 

Linear regression problem: 
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Dual Problem 

 

 

 Key idea: form a dual problem to reduce the number of unknowns 

 

 Primal problem 

 # of unknowns = # of DCT coefficients  # of dies 

 

 Dual problem 

 # of unknowns = # of measurements 

 

 Since we have substantially less measurements than unknowns, 

solving the dual problem is significantly more efficient 

2

2 1

1
min   

2
    

α
B α f αPrimal problem: 
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Strong Duality 
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Dual Augmented Lagrangian 

 Define an auxiliary variable z to form an equality constraint 

 

 

 

 

 

 

 Solve the augmented Lagrangian of the dual problem 
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Alternating Direction Method 

 

 

 

 Solve optimization with alternating direction method [Yang10] 
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Fast Matrix Inverse 

 

 

 Since DCT basis functions are used, we have 

 

 Hence, we do not need to explicitly calculate matrix inverse 
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Fast Matrix-Vector Multiplication 

 

 

 

 

 

 

 Since DCT basis functions are used, we can calculate these 

matrix-vector multiplications by fast DCT or IDCT transform 
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Two-Pass Test Flow 

 Measure all dies on one wafer if its spatial pattern cannot be 

predicted by a number of pre-selected dies 
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Error Estimation 

 Modeling error by VP must be sufficiently small to ensure small 

escape rate and yield loss 
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Experimental Setup 

 Production test data of an industrial dual radio RF transceiver 

 9 lots and 176 wafers in total 

 6766 dies per wafer and 51 test items per die – test items were 

selected by [Chang11] 

 1,089,120 good dies and 101,696 bad dies 

[Chang11]: H. Chang, K. Cheng, W. Zhang, X. Li and K. Butler, “Test cost reduction through 

performance prediction using virtual probe,” ITC, 2011 

Lot ID 1 2 3 4 5 6 7 8 9 

Wafer # 25 9 23 25 25 25 17 25 2 
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Spatial Pattern Examples 

 Spatial pattern is observed for a subset of test items, but not 

all test items 

20 40 60 80

20

40

60

80

100

X Axis

Y
 A

x
is

 

 

0

0.5

1

20 40 60 80

20

40

60

80

100

X Axis

Y
 A

x
is

 

 

0

0.5

1

20 40 60 80

20

40

60

80

100

X Axis

Y
 A

x
is

 

 

0

0.5

1

20 40 60 80

20

40

60

80

100

X Axis

Y
 A

x
is

 

 

0

0.5

1

Test item #1 Test item #48 



Slide 22   

Wafer Map Prediction 

 Two different solvers are implemented for comparison purpose 

 IPM: interior-point method 

 DALM: dual augmented Lagrangian method 

 

 

 

 

 

 

 

 

 DALM achieves up to 37 runtime speedup in this example 

Number of 

Dies 

IPM DALM 

Runtime (Sec.) Runtime (Sec.) Iteration # Speed-up 

100 48.3 12.2 7027 3.96 

250 62.7 10.3 5664 6.07 

500 84.7 8.9 5083 9.52 

1000 119.9 8.1 4504 14.88 

2000 171.2 7.3 3922 23.56 

4000 255.2 6.7 3580 37.86 
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Wafer Map Prediction 

 IPM and DALM result in identical modeling errors 
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Wafer Map Prediction 

 IPM and DALM predict identical wafer maps 

Actual wafer map Predicted wafer 

map by IPM 

Predicted wafer 

map by DALM 
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Test Cost Reduction 

 Total number of measured dies for each test item 

 IPM and DALM yield identical results 

Full IPM DALM 

Overall test cost 60M 32M 32M 

Test cost reduction  1.9 1.9 

Escape rate  1.2103 1.2103 

Yield loss  2.0103 2.0103 
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Conclusions 

 Reducing test cost is a critical task for nanoscale integrated 

circuit design and manufacturing 

 Virtual Probe (VP) is an efficient method for test cost reduction 

based on wafer-level spatial variation modeling 

 

 Propose an efficient Dual Augmented Lagrangian method 

(DALM) to reduce the computational cost of VP 

 Achieve up to 37 runtime reduction over the conventional 

interior-point solver 

 

 The proposed DALM solver can be further applied to a number 

of other analog CAD problems related to sparse approximation 

 E.g., analog performance modeling, analog self-healing, etc. 
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