An Event-Driven Simulation of Analog/Mixed-Signal Systems and Its Implications to Property Assertions

Prof. Jaeha Kim Mixed-Signal IC and System Group Seoul National University

XMODEL and Property Assertions

- XMODEL is a SystemVerilog-based event-driven simulator for analog and mixed-signal systems
 - With 100~1000x speed-up over Verilog-AMS or SPICE
- This talk addresses ways to assert properties in XMODEL using SystemVerilog Assertions

Problems with Straight Verilog

- In case we want to model the effects of jitter and ISI on BER of a high-speed receiver
 - Sub-ps simulation time-step is required to express clock jitter and input data waveform
 - Simulation speed has to be sacrificed to retain accuracy

Case 1: Expressing Clock Timing

- Normally, to express accurate clock timing in PLLs one needs very fine simulation time steps
- XMODEL removes this dependency by adding an explicit timing information to the signal (*xbit*)

Data Supplementation

- The first idea was to add auxiliary information to the signal in order to express it accurately
 - Without relying on fine simulation time steps
 - For clock signals, it is the time offset
- The struct type in SystemVerilog is handy in keeping the language simple

typedef struct { bit value; real t_offset; } xbit;

module divider(
 input xbit clkin
 output xbit clkdiv
);

Case 2: Expressing Analog Signals

Instead of using a series of time-value pairs, XMODEL expresses signals in a functional form:

Expressing Analog Signals (2)

- The form can accurately express all possible outputs of linear systems requiring far fewer events
 - Including sinusoids, exponentials, ramps, steps, etc.

Simulating System Responses

Numerically integrating an ODE results in a trade-off between speed and accuracy

Simulating System Responses (2)

Signals have an alternate s-domain representation:

$$x(t) = \sum_{i} c_i t^{m_i - 1} e^{-a_i t} u(t) \xrightarrow{\mathcal{L}} X(s) = \sum_{i} \frac{b_i}{(s + a_i)^{m_i}}$$

With this, the response of a linear system can be computed algebraically without integrating ODE:

Event-Driven Simulation of Analog

Channel Model Example

- in.flag indicates that in.param_set is changed
- eval_system() calculates sdomain output
- out.flag notifies subsequent blocks of the change events

module channel (input xreal in, output xreal out);

// channel transfer function
chandle TF_channel;

M I Mixed-Signal IC and C S System Group at SNU

XMODEL Simulation Accuracy

- Since the waveforms are expressed in functional forms, accuracy depends weakly on the time step
- ► The eye diagrams of DFE receiver vs. time steps:

XMODEL Simulation Speed

- Simulation speed is also very weakly dependent on the time step
- ▶ 100~1000x faster than Verilog-AMS or SPICE

SystemVerilog Assertions (SVA)

- SystemVerilog Assertions (SVA) is a language extension to describe property assertion checks
- Since XMODEL is based on SystemVerilog, it can use SVA to check AMS properties via simulation

```
property handshake;
@(posedge clk) REQ |-> ##[1:2] ACK;
endproperty
```

assert property (handshake); cover property (handshake);

Time-domain Property Assertion

Check the eye opening of the received signal

slice check_max(.in_pos(signal), .in_neg(mask_max),.out(flag_max));
slice check_min(.in_pos(signal), .in_neg(mask_min),.out(flag_min));

property eye_is_open;
 flag_max || ~flag_min;
endproperty

$$\Diamond$$

assert property (eye_is_open);

signal >= mask_max or
signal <= mask_min
at all times</pre>

Assertion Check Results

M I Mixed-Signal IC and C S System Group at SNU

Frequency-domain Property Assertion

Check the amount of jitter peaking in a phase-locked loop due to the presence of a closed-loop zero

$$H(s) = N \frac{2\zeta s/\omega_n + 1}{s^2/\omega_n^2 + 2\zeta s/\omega_n + 1}$$

PLL Parameter Estimation

- From the traces of ϕ_{in} and ϕ_{out} , estimate K_P and K_I and verify whether ω_n and ζ meet the spec.
 - What input stimulus is eligible for such estimation?

Unknown Parameters

Open-Loop Approach

► K_P and K_I can be found by solving this open-loop EQ:

 $\begin{bmatrix} \phi_{err}[\mathbf{n}] - \phi_{err}[\mathbf{n}-1] & \phi_{err}[\mathbf{n}] \\ \phi_{err}[\mathbf{n}-1] - \phi_{err}[\mathbf{n}-2] & \phi_{err}[\mathbf{n}-1] \end{bmatrix} \begin{bmatrix} K_P \\ K_I \end{bmatrix} = \begin{bmatrix} \phi_{out}[\mathbf{n}] - 2\phi_{out}[\mathbf{n}-1] + \phi_{out}[\mathbf{n}-2] \\ \phi_{out}[\mathbf{n}-1] - 2\phi_{out}[\mathbf{n}-2] + \phi_{out}[\mathbf{n}-3] \end{bmatrix}$

By examining the condition number of this matrix, we can tell whether the assertion check is covered

With Step Excitation

With Sinusoidal Excitations

Summary

- XMODEL is a truly event-driven behavioral simulator that can model analog and mixed-signal systems in SystemVerilog
- Its compatibility with SystemVerilog allows the use of SystemVerilog Assertions (SVA) to implement timedomain and frequency-domain assertion checks for analog/mixed-signal systems

Backup Slides

Switched-Linear Circuits

Many switching supplies can be modeled as a system switching among multiple linear systems

Simulation Results: Boost Converter

Runtime is 8.2sec for 0.1sec simulation time (~110X faster than SPICE)

Weakly Nonlinear Circuits

 CTLE of high-speed link receiver may exhibit limiting or saturating behavior

Simulation Results: Eye-Diagrams

