
Feature based State Space Coverage of Analog Circuits

Andreas Fürtig∗, Sebastian Steinhorst§ and Lars Hedrich∗

∗ Institute for Computer Science, Goethe Universität Frankfurt am Main, Germany
§ Department of Engineering, Aarhus University, Denmark

Email: {fuertig, hedrich}@em.cs.uni-frankfurt.de, sebastian.steinhorst@eng.au.dk

Abstract—This paper proposes a systematic and fast analog
coverage-driven verification methodology which could increase
the confidence in verification of today’s analog blocks. We define
an appropriate coverage metric to score simulations and then
minimize the simulation effort for achieving full state space cover-
age with an algorithm generating appropriate input stimuli. Our
proposed method uses characteristic properties of a discretized
representation of the state space such as the spatial distribution
of eigenvalues, guiding the generation of short and purposeful
stimuli. The experimental results show a significant speed-up with
similar accuracy compared to the state-of-the-art.

I. INTRODUCTION AND RELATED WORK

Traditionally, analog circuit design and verification needs
sophisticated designers and verification engineers to prevent
faulty behavior and expensive redesigns. Nowadays, the pres-
sure on them due to the significant analog part on common
chips (automotive, consumer) and short design cycles is fur-
ther increasing. Unfortunately there are not many systematic
approaches to tackle the functional verification problem for
analog circuits – the standard procedure to prevent hard to find
bugs is to use expert knowledge from experienced designers.

One direction to systematically check analog circuits may
be the full automatic characterization [1] based on formalized
specifications using machine readable specifications [2] or
formal languages such as PSL [3]. However, the effort to setup
these specifications is sometimes large and, even worse, they
do not guarantee to find unknown bugs because they rely on
predefined input stimuli for each performance test case. With
simulation only, there still exist uncovered scenarios which
may later arise as a bug in the field.

Formal verification for analog circuits [4], [5] will cer-
tainly help as it can guarantee to find problematic design
flaws violating the specification. However it suffers from long
runtimes, hard to interpret results and the perennial “translate
specification into a formal language” problem.

A compromise could be the use of coverage metrics and
coverage-increasing measures. The digital world has developed
a lot of coverage metrics [6], [7], [8] and uses them with
success. Depending on the complexity of the Device Under
Verification (DUV), the methods are more or less complete.
The complete methods investigate for example Finite State
Machines (FSM) [9] and have some means to try to restrict
the simulation input stimuli to the relevant part of the state
space (see SFSM in [9]). The less complete methods (code
coverage, specification coverage) use measures to guide the
verification to the most probable bug location for example by

systematically visiting each conditional branch in an HDL-
description.

For analog circuits, a very low number of coverage inves-
tigating approaches besides the above explained formal verifi-
cation techniques exist. There are some approaches stemming
from the test community measuring and increasing the analog
fault coverage [10], [11]. However, they are not intended to
find functional faults. Horowitz et al. [12] also tries to increase
the confidence in the functional verification using a high-level
functional model but without a systematic method to increase
some underlying measure. Two other approaches are built for
hybrid systems [13], [14], suffering from being able to handle
strongly nonlinear analog circuits on transistor level. Steinhorst
et al. [15] and Karthik et al. [16] concentrate on the analog
state space to systematically implement formal verification,
hence being accurate and complete. However, they also have
no well defined measure for the coverage and suffer from the
large state space to investigate. As a remedy, in this paper,
we later propose a coverage optimization algorithm that takes
into account the dynamics of the state space. Consequently, the
algorithm can identify regions of critical nonlinear behavior
requiring a very dense coverage, as well as regions with
highly linear behavior which is not critical for the verification
coverage. The latter will enable us to drastically reduce the
volume of the visited state space.

Contributions. This paper introduces a complete method-
ology for optimization of analog verification coverage by
analyzing the dynamics of the state space of the Design under
Verification (DUV), providing four main contributions outlined
in the following.

• We present a state space coverage metric in Section III
which creates a relation between transient simulation
waveforms and states of a discrete representation of
the DUV which we introduce in Section II.

• Based on the coverage metric, we introduce a coverage
optimization algorithm that maximizes the defined
coverage metric.

• The state space coverage metric and algorithm are
further developed into the proposed λ state space
coverage metric, to identify interesting regions and
neglect uniform parts of the state space in Section IV.

• Our metrics and algorithms are evaluated on several
analog transistor level circuits in Section V and clearly
show the advantages over a state-of-the-art approach.

II. STATE SPACE MODEL GENERATION

The state space coverage analysis we are proposing in this
paper requires a discrete model of the analog circuit. We use a
trajectory based state space discretization proposed in [17].
This method is based on discretizing the underlying DAE-
System of the circuit in the state space. The discretization is
performed using an electrical circuit simulator with full SPICE
accuracy [18].

With these method we can construct a discrete state space
model MATS :

Electrical Circuit
discrete modeling−→ MATS (1)

Analog Transition System (ATS)
For the ATS we define a five-tuple MATS = (Σ, R, LV , T, Lλ)
where

• Σ is a finite set of states of the system.

• R ⊆ Σ × Σ is a total transition relation, hence for
every state σ ∈ Σ there exists a state σ′ such that
(σ, σ′) ∈ R.

• LV : Σ→ Rnd is a labeling function that labels each
state with the vector of nd variables containing the
values of the state space variables and the inputs of
the DAE system.

• T : R → R+
0 is a labeling function that labels each

transition from σ to σ′ with a real valued positive or
zero transition time that represents the time required
for the trajectory in the state space between these
states.

• Lλ : Σ→ Rnλ is a labeling function that labels each
state with a vector of the nλ eigenvalues associated
with the state.

Within the structure MATS , a path π beginning at state σ
is a sequence of states π = σ0, σ1, σ2, ..., σn with σ0 = σ and
(σi, σi+1) ∈ R for 0 ≤ i < n.

In an extension to the method of [17] we calculate and store
the eigenvalues of each state during the discretization process.
For this purpose, the system’s dynamics are linearized in the
specific state and then transformed into the frequency domain
using Laplace transformation. The number of non-zero entries
in Kronecker’s canonical form of the transformed capacitance
matrix of the frequency domain representation corresponds to
the number nλ of eigenvalues in the generalized eigenvalue
problem. For a detailed description of the eigenvalue decom-
position, please refer to [19].

III. STATE SPACE COVERAGE

This section describes a method to match a transient
simulation response to the previously described state space.
Our goal is to automatically create an input stimulus for an
analog simulator to maximize the presented analog state space
coverage. A path finding algorithm is presented afterwards, as
well as possible restrictions of this method.

The state space coverage ζ denotes the ratio between
visited states and the sum of all reachable states ΣR of a given

circuit. The wanted coverage metric should assess a simulation
response based on the following characteristics:

• A coverage value near 100% implies a high probability
that all possible faults of the circuits could be detected.

• The measure has to be monotonic in the number of
visited states: If more states are visited, the measure
should increase.

The resulting number can be used to compare different input
stimuli for an analog simulator leading the designer to much
more useful test cases, reducing the possibility of missing
possible design flaws.

The Analog Transition System MATS described in Section
II creates a vast number of states which could possibly not
be reachable at all. Using the number of states |Σ| of the
full system results in a metric not able to gain full coverage.
Hence, a set of reachable states ΣR is computed from all states
Σ visited by the state space discretization using a simple set
based reachability algorithm. For our purpose, the number of
reachable states is lower or equal the number of all states.

A. State Space Coverage Calculation

A transient simulation response consist of a set of different
data points, representing the state of an analog circuit at a
given time step. To match each of these points to a set inside
our MATS , we use an Euclidean distance to mark a state as
covered by a simulation.

In a very first straight-forward approach, one can compute
a nearest neighbor for every data point. For that, we store
the previously defined Analog Transition System MATS in a
suitable space-partitioning data structure in form of a k-d tree
[20]. The number of nodes in this tree equals the number of
states in the system. Hence, if a discretization only consists of
very few states, each point of a simulation response will lead
to a covered state, although the state is very far off. Obviously
this simple approach does not calculate a smooth and adequate
measure. Since every point has a nearest neighbor, the distance
is not considered (cf. Fig. 1, upper left).

A much better approach is to select every state in a
given distance around a data point of the transient simulation
response. This allows to have a measure independent of the
sampling distance in the state space as well as the sampling
distance of the transient simulation result. Fig. 1 shows dif-
ferent values for a distance to accept different states inside a
MATS marked as covered. It can be seen, that a maximum
distance must be chosen adequately, since using a too large
distance could mark states with different behavior compared
to the transient trajectory under investigation, while a too small
distance will underestimate the set of covered states C.

A good starting point for the distance is to select the
median distance between two neighbor states in the discrete
state space or to use a percentage of the diameter of the
reachable state space. Here, we conservatively take the median
length of all transitions R inside the MATS .

Consequently, the coverage of a given transient simulation
response can now be computed using the cardinality of the

Fig. 1. Euclidian distance method for selecting the covered states of a
simulation result. Red crosses indicate the trajectory corresponding to the
transient simulation result. Black boxes are marked as covered, yellow boxes
are marked as uncovered.

elements in the set C and the number of states in the reachable
discrete state space ΣR:

ζ =
|C|
|ΣR|

(2)

This gives us the possibility to rate a set of test by calculating
a coverage for each test as long as a full coverage is reached.
Full coverage in this context means every reachable state inside
a MATS was reached by simulation. Hence, no unexpected
behavior can occur. To enhance the coverage ζ a designer could
develop new tests as long as uncovered states exists. As we
will see in Section IV an alternative is to restrict the number
of “to be reached” states from |ΣR| to |Σλ|.

B. Path Planning

As mentioned in the previous subsection, a full coverage
of a discrete state space is a desirable goal. For automation
purposes, a path planning method is introduced, as the creation
of appropriate input stimuli is crucial for the usage of the
coverage described before.

First of all, the MATS is enhanced by a labeling function
ωσ : Σ→ N+

0 that labels each state with a weight, denoting the
number of visits of this state by a simulation. Together with
the relation R, this eases a path finding inside the discrete
state space. Another helping aspect is an additional set ΣDC ,
which holds a set of DC operation points of the MATS . As
stated beforehand a path π through the discrete state space can
be directly used to create an input stimulus for a simulation
software, as the labeling function LV also holds the inputs
to the system. Timing informations can be gathered from the
transitions between two states in the MATS .

Using an A∗ algorithm, it is easy to compute a path through
the state space targeting an uncovered state. This method
will lead to a vast number of very small simulations. As a
result, the startup time of the simulation software will dominate
the simulation time. To avoid this behavior, a path planning

Discrete Analog

Transition System

Input stimulus creation

and simulation

Path search

Coverage and

weight update

V1 nin 0 pwl(

+ 0 0.16

+ 2.534221e-07 0.14

+ 5e-07 0.12

+ 2.532375e-05 0.12

+ 2.6e-05 0.1

+ 2.625555e-05 0.08

+ 2.659432e-05 0.06

+ 3.722322e-05 0.06

Fig. 2. Coverage maximization algorithm based on discrete state space
modeling.

algorithm is needed to create simulation input stimuli which
meet the following characteristics:

• The resulting path should avoid already visited states.

• It should consist of as many unvisited states in the
MATS as possible.

An approach to satisfying these criteria exists in [15], but
with larger circuit size a full input stimulus created using this
method consists of significantly more data points than |ΣR
itself. More complex circuits lead to a very long runtime of
the simulation, due to the increased state space dimensions and
more state space points. As we will see in the results section,
the constructed single stimulus by that method performs badly
in terms of the achieved state space coverage.

To improve this method, we introduce a weight-based path
planning: Let π be a set of states describing the path from a
starting to a target state. The length |π| is the number of states
inside the path. Since every state has a weight ωσ , the weight
of a path is ωπ = Σni ωσi . An unvisited, randomly chosen
state σu (indicated by its weight ωσ = 0) is used to compute
all possible paths from every operation point σd ∈ ΣDC .
Additionally, we compute the longest path starting in state
σu back to the operating points. This gives us the possibility
to concatenate the resulting paths, producing a longer overall
path. To avoid very long paths (like the ones created by the
method in [15]), the length of the resulting path is limited by
the number of unvisited states in the whole system.

C. Coverage Maximization Algorithm

With bigger analog circuits, the possibility to reach full
coverage with one single input stimulus is very small. For
that, we introduce an algorithm to cover all reachable states
inside a MATS . It is very easy to see, that one single stimulus
created by the path finding algorithm described beforehand,
will not reach all states in the system.

The presented Coverage Maximization Algorithm is shown
in Fig. 2. In every step, the algorithm selects an unvisited state
and calculates a path targeting that state. Selecting the longest
path with minimum cost maximizes the possibility to cover at
most unvisited points at once. While traversing the graph, we

are able to create an input stimulus for a path. Each data point
of the resulting transient response is mapped to a state inside
the MATS , increasing the weight of that state as well as the
overall coverage of the whole system. The algorithm stops, if
every state in the state space is covered by a simulation.

With increasing complexity of the investigated circuits, it
is furthermore not possible to reach high coverage measures ζ
in a reasonable computation time and with short overall input
stimuli length. Hence, the number of states to inspect must be
reduced, which will be described in the next section.

IV. λ STATE SPACE COVERAGE

As we will see later on in the results section, trying to reach
a full coverage is a very time consuming procedure even for
small devices like a Schmitt trigger or lowpass filter circuit.
Visiting every single reachable state in an analog circuit often
makes no sense, since many regions of the state space have a
homogeneous behavior – in most cases linear behavior –and
can be investigated by one trajectory through these regions.
To reduce the number of states to cover without missing
regions with a heterogeneous behavior and important states, we
are segmenting the discrete state space into different regions.
Namely, these are regions with uniform (linear) behavior,
non-linear parts with high dynamic (such as limited output
voltage swings) or border regions of the discretization. Regions
with nonlinear or static nonlinearities needs much deeper
investigation, too. In this section we will describe different
classes of analog circuits and suggest some methods to detect
them.

To differentiate the states in the MATS distance based
methods are used as well as eigenvalues, which are computed
and stored during the discretization process in every state of
the system. Static circuits like mixer or Low-dropout regulators
can be compared using their linear or translinear behavior. In
sum, this leads to five different coverage value vectors which
will be described in the following. Each vector has the same
length as the amount of states in the discrete state space and is
either set to 0 or 1, depending on the response of the according
method of inspect.

1) Local linear regions: Many analog circuits have a linear
behavior and huge regions inside the discrete state space with
similar behavior. To detect those regions, we are using the
previously stored eigenvalues in every state of the system. Each
state σ in the system has a list of ancestors and successor states.
~Lσ is set to 1 if one of the neighboring states has a significantly
(| · | > 50%) different eigenvalue than σ, otherwise it is set to
0. Fig. 3 shows a simple lowpass filter circuit and two large
linear regions. As the circuit is ideal, no nonlinearities occur
and we have a large linear region (blue).

Vout

V1

Fig. 3. Detection of linear regions: The discrete state space of a simple RC-
lowpass filter circuit (left) and the values of ~Lσ (right). As the whole system
is linear we got only one big linear region (blue).

On the other hand, in Fig. 4 the same analysis is conducted
for an inverting active RC lowpass with an operational ampli-
fier. This circuit has a large linear region and small nonlinear
regions. The latter is due to shifted eigenvalues when the
operational amplifier output reaches saturation at the supply
rails and in this case also 0.7V before reaching the 2.5V
positive supply rail.

Vout

V1

Fig. 4. Detection of linear regions: The discrete state space of an inverting
active RC-lowpass filter circuit with limiting due to the used operational
amplifier (left) and the values of ~Lσ (right).

2) Global linear regions: Similar to the previous described
detection of local linear regions, global linear regions can be
detected using the eigenvalues of the whole system. First of
all, we compute the median of all eigenvalues of the whole
MATS , as this indicates the basic dynamic level of the analog
circuit. ~Dσ is then the absolute difference to the median value
for each state σ ∈ ΣR. All values are normalized to [0, . . . , 1]
to ease the later summation process. Fig. 5 shows the results
of this detector for a basic Schmitt trigger circuit.

Vout

Fig. 5. Detection of global linear dynamic regions: The discrete state space of
a Schmitt trigger circuit (left) and the resulting areas with nonlinear dynamics
(right, red points).

3) Border regions: As mentioned before, border regions
are interesting and should be visited in any case by the path
finding algorithm. To compute the states in the border region
of the reachable set, the convex hull conv(ΣR) of all reachable

states of the circuit is computed using the approach from [21].
~Bσ is set to 1 if the state σ is located within a Euclidean
distance on the edges of the resulting polytope, otherwise it is
set to 0.

4) DC operating points: In the same manner as the border
regions, the direct neighborhood of each DC operating point is
computed. ~Oσ is set to 1 if the state σ lies in the neighborhood
of the DC operating point or is the state itself. Fig 6 shows
the result of the DC operating point detector as well as the
border regions.

V1

Vout

Fig. 6. Detection of regions at the border and around DC operating points:
Discretization of an inverter example (left) and the resulting areas (left).

5) Static circuits: Besides the so far described circuits, lin-
ear constant (Low-dropout regulators) or so called translinear
circuits (mixer circuit) exists. For these class of analog circuits
– which are easily discernible as they only consists of DC
operating points – an optimal output function ~fout exists. This
function is currently guessed but could be automatically gath-
ered by some sort of optimization process. ~Sσ = |~fout− ~fmeas|
is the absolute error between the output function and measured
output voltage of the analog circuit normalized to [0, . . . , 1].
Fig. 7 shows the result of the static circuit area detector.

Vout

Fig. 7. Detection of static circuit regions: Discretization of a mixer circuit
(left) and the resulting normalized error (right, red points indicate a high error).

As every step of the analysis described beforehand indi-
cates possible interesting states of the full MATS system, the
region of interest of the device under test is formed by the
non-zero entries in ~I defined as:

~I = ~L+ ~D + ~B + ~O + ~S (3)

The importance of each state is now indicated by the according
value in the vector ~I . On the other hand, if its value is 0,
none of the previously described detectors marked this state
as important. This information can now be used and integrated
in the path planning algorithm presented in Section III. In this
algorithm, each state was initialized with a node weight ωσ = 0
indicating that this state was never visited before by a transient

simulation. According to this, we initialize the weight of a state
by its interest factor Iσ:

wσ =

{
0, if Iσ ≥ t,
1, otherwise

(4)

, where t is a given threshold. All states with a low weight ωσ
(and therefore a high interest value Iσ ≥ t) are now preferred
by the path finding algorithm. States with a higher weight are
not removed from the path planning algorithm, so that there
is still a small possibility that a simulation covers this state.

With these information we are now able to create a reduced
set of states Σλ ⊆ ΣR which consists of all interesting state
space points with an interest factor Iσ ≥ t:

Σλ = {σ ∈ ΣR|Iσ ≥ t} (5)

The λ state space coverage can now be defined as the
number of visited states divided by the number of states in
the reduced set Σλ, where in the numerator only states are
counted which belong to that reduced set Σλ:

ζλ =
|C ∩ Σλ|
|Σλ|

(6)

The definition of a λ state space coverage and experimental
results show clear evidence that the concept is still very
pessimistic uncovering all design flaws with large possibility.

V. RESULTS

In this chapter we will demonstrate our proposed method
on various analog circuits on transistor level as well as on
some selected Verilog-A implementations (see Table I). The
examples try to cover many possible types of analog circuits:
static nonlinear systems, dynamic linear systems and dynamic
nonlinear system to show the wide scope of our method.

In Table II three methods are presented. The normal
method is taking every state of the discretization into account
to calculate a coverage, while the proposed method only uses
interesting states based on the criterion of Section IV. To show
the overall speedup, both methods are compared against the
single method [15]. The experiments are carried out on a 3.4
Ghz Dual-Core machine.

Starting from some very basic analog circuits, a lowpass
filter has a high amount of states depending on the discretiza-
tion accuracy. For this often used circuit, a lot of simulations
seems to be needed to gain full coverage for a straight forward
“normal” method. In comparison to that, the analysis of the
state space reduces the number of interesting states by 74%.
Full coverage can be reached by one simple simulation. This
should be desired for circuits of that size. For another very
basic example, the inverter circuit, the amount of states can be
reduced by 77.6% as well.

A bandpass filter [22] example with one input and two
dimensions (Fig. 8) has more than 5000 states after the
discretization process. Due to the heavy nonlinearities at the
limiting region of the operational amplifier full coverage in this
example is not possible, as not every as reachable marked state
can really be reached by a simulation path. This is because

TABLE I. STATISTICS OF APPLIED ANALOG CIRCUITS ON TRANSISTOR LEVEL. THE Mixer AND Low-dropout regulator EXAMPLES ARE IMPLEMENTED
AS A VERILOG-A BEHAVIOR MODEL AND THEREFORE HAVE NO TRANSISTORS AS THE OTHER EXAMPLES.

Number of Number of State space States in States in λ
Analog Circuit inputs transistors dimensions reachable set |ΣR| reduced set |Σλ| Schematic
RC lowpass filter 1 0 2 861 227 Basic
inverter circuit 1 2 2 1510 338 Basic
Schmitt trigger 1 10 2 1903 356 [22]
Bandpass filter 1 8 3 5660 1948 [22]
Level shifter 1 6 3 1081 641 [23]
log domain filter 1 13 2 2526 394 [24]
gmC filter 1 69 3 344 239 [24]
Mixer 2 — 2 442 120 industrial
Low-dropout regulator 2 — 2 469 214 industrial

there are always some discretization errors during the creation
of the state space. Hence, a trajectory can be computed with
the presented path finding algorithm from section III, but
the created input stimulus for the simulation does not reach
all wanted target states. After 173 simulations a coverage of
83.06% is obtained. With the presented state space analysis,
only 1948 states are marked as interesting, so the overall
sum of simulations can be reduced to only 18 simulations,
reducing the overall runtime of the simulation by 70.4%. As
the discretization error still exists, full coverage cannot be
reached for that example, too.

Another unsophisticated, but also an example with strong
nonlinearities is a Schmitt trigger circuit where the simulation
runtime could be reduced by 95%. As this circuit has big areas
with linear behavior and only a small region with nonlinear
dynamics, the number of important states can be decreased
dramatically.

To demonstrate our approach on static nonlinear system,
we calculate a coverage for two static examples: a mixer and a
Low-dropout regulator circuit. Both implementations are used
in an industrial environment. The resulting state space could
be decreased to speed up the simulation effort. Our presented
method detects the interesting regions (e.g. high load for the
LDO) automatically and calculates a high coverage by only
running few simulations to that region.

To complete our result section, we are also able to create
a discretization of a Verilog-A model description of an analog
circuit (see mixer and low-drop regulator). This speeds up the
simulation process on the one hand and also eases the imple-
mentation effort of sophisticated circuits. Using this approach,
our presented method can also be used to create input stimuli
to check the equivalence of two different implementations of
the same system with large confidence.

VI. CONCLUSION

In this paper, a new coverage metric for analog circuits
has been proposed. The λ state space coverage uses the
eigenvalues and structural properties of the reachable state
space of a nonlinear analog circuit on transistor level to
extract a set of states in the state space which have to be
visited by input stimuli. It keeps strongly nonlinear regions
in that set while neglecting linear, uniform regions, resulting
in 6.8 times speed up of the simulation time of the generated
stimuli. The quality of the input stimuli is still as high as
with the presented standard state space based coverage method
and better than state-of-the-art methods. Experimental results
show that hidden faults can be uncovered and real industrial

R 1

C
1

C 2

R
2

R 3

+

-
R

4

R
5

V in V
out

I II

Fig. 8. Schematic of a bandpass filter [22] (top) and the result of the
discretization process with 5660 states (bottom).

circuits with up to 69 transistors can be handled efficiently.
We can conclude that the confidence in the input stimuli for
a certain analog circuit can be measured by the proposed
metric and that the verification coverage can be significantly
increased with a small simulation overhead using the proposed
λ state space coverage maximization algorithm.

Future work will concentrate on improving the scalability
to work on bigger examples. Additionally the path finding
algorithm can be further refined to prevent double visiting of
states, resulting in shorter input stimuli and faster simulation
runs.

VII. ACKNOWLEDGMENTS

This work has been carried out in the project ANCONA,
funded by the German Federal Ministry of Education and
Research (BMBF) in the ICT2020 program under grant no.
16ES021. The project is supported by the industry partners
Infineon Technologies AG, Robert Bosch GmbH, Intel AG and
Mentor Graphics GmbH.

REFERENCES

[1] J. Eckmüller, M. Gröpl, and H. Gräb. Hierarchical Characterization of
Analog Integrated Circuits. DATE ’98: Design, Automation and Test in
Europe, 1998.

TABLE II. RESULTS OF THE PROPOSED COVERAGE CALCULATION ALGORITHM. normal IS THE PRESENTED PATH PLANNING ALGORITHM WITH
UNDERLYING STANDARD STATE SPACE COVERAGE METRIC. proposed IS THE PROPOSED PATH PLANNING ALGORITHM WITH UNDERLYING λ STATE SPACE

COVERAGE METRIC. single IS THE PATH PLANNING ALGORITHM FROM [15] (NOT AVAILABLE FOR Low-dropout regulator AND mixer EXAMPLES).

Coverage > 50% Coverage > 75% Overall Coverage in %
Analog Circuit Method Simulations Runtime Simulations Runtime Coverage Simulations Runtime
RC lowpass filter normal 1 4.88 2 5.62 ζ 100.00 5 7.28

proposed 1 1.60 1 1.60 ζλ 100.00 1 1.60
single 1 7.11 1 7.11 ζ 100.00 1 7.11

inverter normal 1 0.15 2 0.23 ζ 92.72 5 0.49
proposed 1 0.15 1 0.15 ζλ 94.32 2 0.24

single 1 3.79 1 3.79 ζ 89.93 1 3.79
Schmitt trigger normal 3 98.96 5 134.06 ζ 87.06 17 215.83

proposed 1 5.62 2 8.16 ζλ 91.40 3 10.79
single 1 19.29 1 19.29 ζ 30.32 1 19.29

Bandpass filter normal 6 74.87 15 124.95 ζ 83.06 173 556.86
proposed 1 31.08 6 97.37 ζλ 88.99 18 164.75

single 1 388.96 — — ζ 62.59 1 388.96
Level shifter normal — — — — ζ 43.91 9 81.46

proposed 1 12.81 — — ζλ 72.21 6 27.97
single 1 266.24 — — ζ 66.39 1 266.24

log domain filter normal 1 1.91 2 2.15 ζ 100.00 7 3.23
proposed 1 0.40 1 0.40 ζλ 100.00 4 1.66

single 1 16.65 1 16.65 ζ 100.00 1 16.65
gmC filter normal 2 0.58 7 2.98 ζ 76.57 8 3.98

proposed 1 0.47 3 1.18 ζλ 85.17 4 1.92
single 1 8.59 — — ζ 65.71 1 8.59

Mixer normal 2 0.49 4 2.23 ζ 100.00 8 5.23
proposed 1 0.43 3 1.48 ζλ 100.00 6 3.92

single — — — — — — —
Low-dropout regulator normal 1 1.37 3 2.40 ζλ 100.00 5 2.79

(Verilog-A) proposed 1 1.13 2 2.19 ζ 100.00 3 2.31
single — — — — — — —

[2] Mingyu Ma, Lars Hedrich, and Christian Sporrer. ASDeX: a formal
specification for analog circuit enabling a full automated design vali-
dation. Design Automation for Embedded Systems, 2012.

[3] Zhi Jie Dong Ghiath Al Sammane, Mohamed H. Zaki and Sofiene
Tahar. Towards Assertion Based Verification of Analog and Mixed
Signal Designs Using PSL. Forum on Design Languages (FDL), 2007.

[4] Mohamed H Zaki, Sofiène Tahar, and Guy Bois. Formal verification of
analog and mixed signal designs: A survey. Microelectronics Journal,
39(12):1395–1404, 2008.

[5] S. Steinhorst and L. Hedrich. Model Checking of Analog Systems using
an Analog Specification Language. In Proc. Design, Automation and
Test in Europe DATE ’08, pages 324–329, 10–14 March 2008.

[6] Finn Haedicke, Daniel Große, and Rolf Drechsler. A guiding coverage
metric for formal verification. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012, pages 617–622. IEEE, 2012.

[7] Shai Fine and A. Ziv. Coverage directed test generation for functional
verification using Bayesian networks. In Design Automation Confer-
ence, 2003. Proceedings, pages 286–291, June 2003.

[8] Andrew Piziali. Functional Verification Coverage Measurement and
Analysis. Springer Publishing Company, Inc., 1st edition, 2007.

[9] Jing-Yang Jou and C Liu. Coverage analysis techniques for hdl design
validation. Proc. Asia Pacific CHip Design Languages, 1999.

[10] K. Arabi and B. Kaminska. Parametric and catastrophic fault cover-
age of analog circuits in oscillation-test methodology. In VLSI Test
Symposium, 1997., 15th IEEE, pages 166–171, Apr 1997.

[11] Joonsung Parky, S. Madhavapeddiz, A. Paglieri, C. Barrz, and J.A.
Abraham. Defect-based analog fault coverage analysis using mixed-
mode fault simulation. In Mixed-Signals, Sensors, and Systems Test
Workshop, 2009. IMS3TW ’09. IEEE 15th International, pages 1–6,
June 2009.

[12] Mark Horowitz, Metha Jeeradit, Frances Lau, Sabrina Liao, ByongChan
Lim, and James Mao. Fortifying Analog Models with Equivalence
Checking and Coverage Analysis. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 425–430, New York, NY,
USA, 2010.

[13] A. Julius, G. Fainekos, M. Anand, I. Lee, and G. Pappas. Robust Test
Generation and Coverage for Hybrid Systems. Proceedings of the 10th

International Conference on Hybrid Systems: Computation and Control
(HSCC), pages 329–342, 2007.

[14] Tarik Nahhal and Thao Dang. Test coverage for continuous and hybrid
systems. In Computer Aided Verification. Springer, 2007.

[15] S. Steinhorst and L. Hedrich. Improving Verification Coverage of
Analog Circuit Blocks by State Space-Guided Transient Simulation.
In IEEE International Symposium on Circuits and Systems, May 2010.

[16] Aadithya V Karthik, Sayak Ray, Pierluigi Nuzzo, Alan Mishchenko,
Robert K Brayton, and Jaijeet Roychowdhury. ABCD-NL: Approxi-
mating continuous non-linear dynamical systems using purely Boolean
models for analog/mixed-signal verification. In ASP-DAC, 2014.

[17] S. Steinhorst and L. Hedrich. Trajectory-directed discrete state space
modeling for formal verification of nonlinear analog circuits. In Pro-
ceedings of the International Conference on Computer-Aided Design,
pages 202–209. ACM, 2012.

[18] A. T. Davis. An overview of algorithms in Gnucap. In Univer-
sity/Government/Industry Microelectronics Symp., 2003.

[19] Sebastian Steinhorst and Lars Hedrich. Advanced methods for equiv-
alence checking of analog circuits with strong nonlinearities. Formal
Methods in System Design, 36(2):131–147, 2010.

[20] Jon Louis Bentley. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM, 18(9), September 1975.

[21] Bernard Chazelle. An Optimal Convex Hull Algorithm in Any Fixed
Dimension. Discrete & Computational Geometry, 10:377–409, 1993.

[22] W. Hartong, R. Klausen, and L. Hedrich. Formal Verification for
Nonlinear Analog Systems: Approaches to Model and Equivalence
Checking. Advanced Formal Verification, R. Drechsler, ed., Kluwer
Academic Publishers, Boston, pages 205–245, 2004.

[23] Wen-Tai Wang, Ming-Dou Ker, Mi-Chang Chiang, and Chung-Hui
Chen. Level shifters for high-speed 1 v to 3.3 v interfaces in a 0.13
µm cu-interconnection/low-k cmos technology. In VLSI Technology,
Systems, and Applications, 2001. Proceedings of Technical Papers. 2001
International Symposium on, pages 307–310. IEEE, 2001.

[24] L. Hedrich and W. Hartong. Low-Power Design Techniques and CAD
Tools for Analog and RF Integrated Circuits, chapter Approaches
to Formal Verification of Analog Circuits, pages 155–192. Kluwer

Academic Publishers, 2001.

