
Comparing Code Coverage Metrics
for Analog Behavioral Models

Andreas Fürtig1, Moritz Paschke1 and Lars Hedrich1

1Institute for Computer Science, Goethe Universität Frankfurt a. M., Germany
1Email: {fuertig, paschke, hedrich}@em.cs.uni-frankfurt.de

Abstract—In current applications Analog/Mixed-Signal
(AMS) circuits gets increasingly demanding. To speed up
the design process parts of the design were implemented
in hardware description languages. Besides positive aspects
like simulation processing times these models need to be
checked in terms of verification run set completeness, i.e.
input stimuli, parameter setting, and test bench circuitry.
For this purposes we present a methodology to adopt code
coverage metrics on Verilog-A models. A public domain analog
circuit simulator automatically instruments and executes the
behavioral description. The coverage results are automatically
annotated and compared to a coverage metric based on the
reachable analog state-space of the circuit. We discuss the
methodology on several examples and sketch a path to improve
the completeness of a verification run set.

I. INTRODUCTION AND STATE OF THE ART

Verification is getting more and more demanding due to
the increasing complexity of digital and especially analog
mixed-signal (AMS) designs. The decision when a design is
ready to produce depends on the knowledge of sophisticated
engineers who creates test patterns in a diversified way. The
amount of tests is only bounded by a full formal verification
of the design which does not seem possible due to runtime
constraints.

But lets take a step back: Complex AMS designs
are implemented in a behavior description language like
SystemC-AMS or Verilog-AMS. These systems can be
split into different (logic) subsystems, mostly digital and
analog parts. Testing digital parts can be done in a suitable
time frame while analog parts take much more effort
due to the continuous characteristics of the signals. Using
Verilog-AMS as a description language has many similari-
ties to the progress of creating software projects. There are a
lot of software testing techniques available [1]. One measure
to express the process of testing in the software environment
is coverage [2]. Today, this measure is available for nearly
every available programming language like C, C++, Java,
etc. and more or less state of the art. These techniques
could be easily adopted to the pure digital design process
in the early stages as well. Jou et al. [3] give a complete
overview over different coverage metrics like statement, de-
cision, event, expression coverage and many more. For more
demanding purposes, very complex coverage metrics exists.
For example, testing and verification of aviation software
products uses modified condition / decision coverage [4]
to fulfill the security aspects. The complexity is in general
exponential, e.g. in the number of state variables for FSMs
of a digital circuit [5] or in the number of decisions in
full path coverage. Coverage metrics for analog designs are
not available due to the heterogeneous characteristics of the
signals and elements in a full system. First attempts were

Fig. 1. Overview of the presented methodology. The usage of different
coverage metrics helps to create a test set for a well tested and bug free
behavioral model.

made by discretization of a netlist implementation and the
underlying DAE system [6]. Comparing pure digital, binary
systems with full continuous ranges of inputs, loads etc.
prevents the usage of digital measurements in the analog
world. But since it is possible to describe analog circuits
with Verilog as well, basic coverage measurements [7] were
already adopted with respect to the metric itself and how to
taking the continuous value range into account. Due to the
enormous range of available functions and the complexity
of analog circuits, manually detecting different operating
points for nearly every line of code seems not reasonable.

It should be clear that coverage itself is only one type of
measurement describing the quality of a set of test benches
and input patterns (in the following called test set) to a
complex system. However a coverage metric does only
assess a certain aspect of the test set and not an overall
quality metric. A fully covered design (coverage equals to
100%) finally does not ensures a bug free design.

We will focus our contributions in this paper on Verilog-A
which is simulated with a public domain analog simulator
GNUcap [8]. To simulate the behavioral model, the Au-
tomatic Device Model Synthesizer (ADMS) [9] is used to
transform Verilog-A (and Verilog-AMS as well) description
to a data tree, containing all needed properties and physical
informations. As all used software in this contribution is
open source, we are able to automatically instrument the
compilation process which we will need in the following.

II. ANALOG COVERAGE DEFINITIONS AND
CORRESPONDING METHODOLOGIES

One main goal of coverage analysis is to give a mea-
sure of how much of a design or implementation was
inspected by a test set. In this chapter we will firstly

1 module r c (in , out , g) ;
2 parameter r e a l c=1e−6 from [0 : i n f) ;
3 parameter r e a l r =1 e3 from [0 : i n f) ;
4 analog begin
5 I (in , o u t) <+ V(in , o u t) / r ;
6 I (out , g) <+ c∗ d d t (V(out , g)) ;
7

8 i f (V(out , g) > 1 . 0)
9 I (out , g) <+ ((V(out , g) − 1 . 0) / 1 0) ;

10

11 i f (V(out , g) < −1.0)
12 I (out , g) <+ ((V(out , g) + 1 . 0) / 1 0) ;
13 end
14 endmodule

Listing 1. Verilog-A model of a limited RC lowpass filter.

initial
Lines
5, 6A

Line 8∅C Line 9 B

Line 11∅D Line 12 E

end

true
false

true
false

Fig. 2. Control flow graph of the RC lowpass filter in Verilog-A.

give a short overview of existing coverage metrics and
adopt them to the concept of Verilog-A behavioral models
and secondly revise an analog coverage to combine both
metrics. Fig. 1 illustrates the presented methodology. To
measure the executed lines of the behavioral model we
instrument the ADMS and GNUcap code. Depending on
the granularity of the wanted coverage metric, different type
of instrumentation is needed, but if there is a chance to
record the full path of execution of a Verilog-A model at
each simulation step, all thinkable coverage metrics can be
computed offline afterwards. Details on the runtime of this
method are presented in Section III.

Listing 1 shows the codelines of Verilog-A model for a
very simple RC lowpass filter which is limited to the range
[−1V, 1V] consisting of four statements, two if -branches,
two parameters and as well some Verilog-A specific code.
We will demonstrate our methods in this section on this
small example.

A. Analog Code Coverage

The simplest form of coverage in the digital domain is
the statement or line coverage. This very straight forward
method points a designer to parts of the implementation
which were not executed by a test set. Missing lines of code
can be based on some misleading input stimuli or a wrong
test bench. A direct adaption of this coverage metric fails at
a very basic mechanism of analog circuit simulators. These
simulators solve complex differential equations by several
numerical methods, for example a Newton iteration. It is
very important not to count every iteration step rather to
include the final timestep into concideration only. Codelines
which can be exectued in a simulation step are counted in
this metric only, skipping comments, parameter definitions,

control statements, etc. For the given example this reduces
the number of codelines to |all statements| = 4. The
statement coverage ζstatement is expressed as the ratio

ζstatement =
|executed statements|
|all statements|

. (1)

In addition to this simple form we can define a branch
coverage. It does not count simple code lines but has an
more abstract view on the code, counting which branches
are visited and which not. If an implementation deals with
a given range of values in the enabling condition of the
if statements, this coverage metric forces the designer to
think about the complementary values as well. In contrary to
ζstatement the nominator of this coverage is not only the sum
of all available branches in the implementation. Moreover
missing else branches need to be counted as well even if
missing in the code. Illustrated at our example in Listing 1
the sum of branches evalutated to 4 due to missing else
branches. A branch itself was executed, if all statements
in this branch were covered by a simulation. The branch
coverage ζbranch is expressed as the ratio

ζbranch =
|executed branches|
|all branches|

. (2)

A coverage metric which depends much more on the
actual value of variables and depending on what path is
evaluated through the model is called path coverage. The
path coverage ζpath is expressed as

ζpath =
|executed paths|
|all paths|

. (3)

Obviously, computation of Equation 3 is very complex,
since the sum of paths is increasing exponentially with
every if statement. In [10] a so called Control Flow Graph
(CFG) for Verilog models are introduced which helps to
detect all possible paths in a behavioral model. Fig. 2 is
the CFG for the RC lowpass filter described before. As
block A is executed in any case, the set of possible paths is
{ACD,ACE,ABD,ABE}. Having a closer look on the
result, we will later on see that reaching a full path coverage
is often not possible. For example, contrary conditions on if
statements will prevent that all paths are reachable. In our
example (see Fig. 2) it is not possible to reach more than
3 paths. Path ABE is not executable.

B. State-Space Coverage

In addition to code based coverage metrics, a state-space
coverage metric can be defined and may lead to a different
point of view on the quality of a test set. In [11] a discretiza-
tion of the full state space of an analog circuit is presented.
Using an analog circuit simulator with full SPICE accuracy,
a discrete state space model MATS = (Σ, R, LV , T) can
be computed, including a finite set of states (Σ), transitions
between those states (R), labeled with a positive or zero
valued time for that transition (T) as well as a labeling
functions LV storing all state space variables and inputs of
the DAE system. In the same way, the simulator can create
such a state space for Verilog-A models. Fig. 3 (left) shows
a discrete state space for the RC lowpass filter described
previously, including the DC operating points of the filter.
A stimulus created for a test bench now leads to a transient
response which can directly be mapped to the discrete state

Fig. 3. Mapping between code, branch, path and state-space coverage. (a) Full discretization of the state space of the implementation. (b) A trajectory
through the state space with colorized paths back-annotated from the Verilog-A model (ζstatement = 75%, ζbranch = 75%, ζpath = 66%, ζstate-space =
9.6%). (c) Annotated Verilog-A code corresponding to that trajectory. (d) Situation after a full state-space coverage have been executed with back-annoted
colorized paths (ζstatement = 100%, ζbranch = 100%, ζpath = 100%, ζstate-space = 100%).

space [6] leading to a set of states C covered by this
trajectory. The state-space coverage ζstate-space can be defined
as the ratio

ζstate-space =
|C|
|ΣR|

(4)

with ΣR being the reachable set of all states Σ.

C. Mapping Between Different Coverage Metrics

With the analog code coverage metrics ζstatement, ζbranch
and ζpath on the one hand and the state-space coverage
ζstate-space on the other hand we are now able to investigate
the relation between those metrics. Since a behavioral
description of an analog device is typically included inside
a test bench circuit (voltage source, resistors, etc.) these
components influence the simulation results in different
ways. Our method shows this relation, guiding the designers
to missing pieces of the implementation and test set.

Figure 3 illustrate the proposed method: (a) is the full
state space of the simple RC lowpass filter. The stationary
DC points are marked blue. (b) a stimulus is simulated
by the simulator, resulting in a trajectory through the state
space. Each simulation step can be directly matched to a
path through the implemented behavioral code (c), showing
lines evaluated or not. Additionally we can back-annotate
these paths in to (b) and colorize them to see graphically in
the state space the location of the reached paths. (c) clearly
shows where the not covered branches were: In this case
line 26 is not reached. The covered lines are marked with
red and green bars in the left column, the branches are
annotated around the if statements. In order to guide the
simulation into a not covered branch one could change the
stimulus, the test bench or some parameter. (d) is created by
applying a coverage maximization method [6], where each
state in the full state space was covered, forming a direct
mapping of the state space to the Verilog-A implementation.

This analysis allows a direct comparsion of the described
coverage methods:

1) Branch vs. Statement Coverage: At first sight branch
and statement coverage have the same significance. But
statement coverage is able to measure coverage of visited
lines already present in the code only while branch coverage
counts branches explicitly missed by the designer. Hence
branch coverage is the more significant measure.

2) Branch vs. Path Coverage: It becomes clear that both
coverage metrics take non existing branches into account,
assuring that the designer don’t miss anything important.

But as every if statement leads to an exponential growth
in the overall amount of paths, the computation for non-
trivial implementations is not possible. Another strong point
against path coverage is the amount of unreachable paths,
which occurs due to contrary statements, branches, etc.
Even in our small RC example the sum of all paths reduce
to three, as both else branches express the opposite voltage
range. The main problem is that the possible contrary
conditions can depend on any intermediate variables and
conditions. Hence a symbolic analysis seems to be neces-
sary to detect and proof an unreachable path in general.

3) Branch- vs. State-Coverage: In this simple RC-
example we can reach 100% state-space coverage and 100%
branch coverage. However this is not always the case: If we
make our example a little bit more difficult by introducing
additional parameters or having multiple electrical ports
being constraint by the test bench circuitry, we can have
100% state-space coverage for a given parameter set in a
given test bench, while the branch coverage is not 100%.
This is a clear hint, that our test bench or parameter set in
combination with the given input stimuli is not sufficient
to test all code of the Verilog-A model. By inspection of
the not covered statements/branches we can guess what to
change in the test bench. In the next section this is done
for a complex EKV transistor model.

III. EXPERIMENTS

The EKV transistor model [12] is – as many other
transistor models – available in a Verilog-A implementation
[13] with 730 lines of code. We put these Verilog-A model
into a testbench to just characterize the transistor by tuning
the VGS and the VDS of the transistor. The drain current IDS

is measured and plotted versus the voltages. With this test
set, we start calculating coverage metrics by using a DC-
Operating point (EKV test set with id 3 in Table I). This
leads to a very low state-space coverage and a low branch
coverage – here we will concentrate on branch coverage and
state-space coverage. Adding some automatically generated
paths to increase state-space coverage leads to test set 4,
clearly increasing branch coverage. However, all other input
stimuli increase the state space coverage further up to 100%
as shown with test set 8 but the branch coverage reaches
at maximum 67.2% indicating that we have to change the
testbench or parameter set. This is done be putting different
voltages on the source node in test sets 5−7. Finally we are
able to get 100% branch coverage with the test sets 3− 7.

TABLE I
RESULTS OF THE PRESENTED COVERAGE METRICS. REMARK: RESULTS FOR ζSTATEMENT , ζBRANCH , ζPATH ARE ONLY AVAILABLE WITH

INSTRUMENTATION OF THE VERILOG-A IMPLEMENTATION. RUNTIME WITHOUT INSTRUMENTATION IS ONLY LISTED FOR COMPARISON.

DUT Id Testbench Param- Stimuli Runtime [s] without /
ζstatement ζbranch ζpath ζstate-spaceeter with instrumentation

RC Lowpass 1 standard default full stim. [6] 0.007 / 0.008 100% 100% 3/3 100%
OP 2 standard default full stim. [6] 0.01 / 0.01 100% 100% 9/9 100%

EKV

3 (vs = 0) ∗ DC 0.01 / 0.01 65.7% 39.7% 1/91 0.2%
4 (vs = 0) † pwl gen. 0.07 / 0.08 85.7% 67.2% 13/91 4.9%
5 (vs = vd− 0.1) † pwl man. 0.01 / 0.02 83.4% 60.3% 11/91 8.4%
6 (vs = vd) ø pwl man. 0.01 / 0.01 81.7% 46.5% 7/91 7.2%
7 (vs = vd− 1) † pwl gen. 0.05 / 0.05 87.4% 65.5% 15/91 30.1%

3-7 0.17 / 0.21 100% 100% 47/91 40.7%
8 same as Id. 3 full stim. [6] 0.80 / 0.95 88.5% 67.2% 45/91 100%

(∗) Parameters AD,PD,CJ,AS,JS of transitor model at slightly changed values. (†) Additionally parameter CJSW shifted.
(ø) Parameters AD,PD,CJ,AS,JS on default values.

The back-annotated path from test set 4 of the EKV
model is shown in Fig. 4 left. We can see that a lot of
different paths (distinguishable by color code) are visited.
However a full inspection, corresponding to test sets 3− 8,
leads to a complete covering shown in Fig. 4 right.

Finally we applied our method also on a Verilog-A
model of an operational amplifier (OP in Table I). As this
model does not use many tunable parameters and due to
its simplicity we reached with the first try (test set 2) either
100% branch and state-space coverage. A change in the test
set by its external connection was not needed.

V(drain)

V
(g
at
e)

V(drain)

Fig. 4. Back-annotated path for the EKV model. Left: Path from test set
7. Right: All paths from test sets 3-8 showing very nicely different regions
of the branches in the state space.

The overhead in terms of runtime for coverage calcula-
tions during simulation can be extracted from column 6 and
is in all cases numerically below 20% recording all 3 code
coverage metrics at one single run.

IV. CONCLUSION

This paper presents code coverage metrics for behavioral
models of analog circuits and a full automatic technique
for computing these metrics. Additionally we compare
the introduced metrics (line, branch, path coverage) with
each other and with state-space coverage. The theory and
evaluation on the examples show that the branch coverage
and the state-space coverage are the important measures
which can help and guide the designer to a well tested
behavioral model and bug free behavioral code. The path
coverage has no real use, as the number of possible paths
could not be calculated for realistic examples leading to a
not determined coverage goal.

The branch coverage has it’s strength in judging if all
code branches and lines are visited and lead to a set of test
benches and parameter shifts which visit at least once each

branch. A flaw could be nonlinear functions like already
mentioned in [7]. For this we use the state-space coverage
to analyse their excitation in different regions which can be
also done automatically and reduce the effort for stimuli
creation drastically. If both coverages reach 100% the
possibility that some bug is still unexcited in the code is
very low. Bigger examples can be processed with code
coverage results as well as the runtime analysis suggests. As
much more sophisticated circuits are composed of smaller
subcircuit components very often, a detailed investigation
of these single components using the proposed state space
coverage method should be sufficient and will be discussed
in future work.

Additionally, we want to extend the methodology for
nonlinear functions in the behavioral code by treating them
in a similar way as branches. Additionally it seems to
be useful to develop some automatic methods to generate
stimuli and test benches/parameter sets in order to maximize
the branch coverage.

REFERENCES

[1] B. Beizer, Software Testing Techniques (2Nd Ed.). New York, NY,
USA: Van Nostrand Reinhold Co., 1990.

[2] A. Piziali, Functional Verification Coverage Measurement and Anal-
ysis. Springer Publishing Company, Incorporated, 1st ed., 2007.

[3] J.-Y. Jou and C. Liu, “Coverage analysis techniques for hdl design
validation,” Proc. Asia Pacific CHip Design Languages, 1999.

[4] H. Kelly J., V. Dan S., C. John J., and R. Leanna K., “A Practical
Tutorial on Modified Condition/Decision Coverage,” tech. rep., 2001.

[5] R. Ho and M. Horowitz, “Validation coverage analysis for complex
digital designs,” in Computer-Aided Design, 1996. ICCAD-96. Digest
of Technical Papers, Nov 1996.

[6] A. Fürtig, S. Steinhorst, and L. Hedrich, “Feature based State Space
Coverage of Analog Circuits,” in Proceedings of the Forum on
Specification and Design Languages (FDL 2016), 2016.

[7] Y.-B. Sha, M.-S. Lee, and C.-N. Liu, “On code coverage mea-
surement for Verilog-A,” in High-Level Design Validation and Test
Workshop, 2004. Ninth IEEE International, pp. 115–120, Nov 2004.

[8] A. T. Davis, “An overview of algorithms in Gnucap,” in University/-
Government/Industry Microelectronics Symp., pp. 360–361, 2003.

[9] ADMS Automatic Device Model Synthesizer,
“https://sourceforge.net/projects/mot-adms/.”

[10] M. Zaki, Y. Mokhtari, and S. Tahar, “A path dependency graph for
Verilog program analysis,” in Proceedings of the IEEE Northeast
Workshop on Circuits and Systems (NEWCAS’03), 2003.

[11] S. Steinhorst and L. Hedrich, “Trajectory-directed discrete state space
modeling for formal verification of nonlinear analog circuits,” in
Proceedings of the ICCAD’12, ACM, 2012.

[12] C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An Analytical MOS
Transistor Model Valid in all Regions of Operation and Dedicated
to Low-Voltage and Low-Current Applications,” Journal of Analog
Integrated Circuit and Signal Processing, no. 8, pp. 83–114, 1995.

[13] Nielsen,I. R. and Warning, D., “Epfl-ekv Version 2.6: Verilog-A
Implementation,” http://legwww.epfl.ch/ekv, 2006.

