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Abstract

Formal verification of analog transistor level circuits is still an open problem. In this paper we present a methodology
which automatically abstracts a very accurate sampled analog circuit block using a reachability tool with SPICE-accuracy.
The resulting hybrid automata (HA) models the – in most analog circuits desired – linear behavior, but also the technology
dependent nonlinear and limiting behavior. We present several abstraction variants and evaluate the accuracy of the model
using some simulations of the SPICE-netlist and the HA. Finally, we show that it can be used for formal verification on
high level with reachability tools.

1 Introduction

Safety critical systems like autonomous driving or medi-
cal devices demand for powerful verification methodolo-
gies. Formal verification offers this opportunity. However
for analog circuits and systems formal verification suffers
from complexity and nonlinearity of underlying equations
in transistor models. However at higher abstraction levels
the analog circuits often behave as nearly linear blocks or
with a known wanted nonlinearity or limiting function. For
this high level behavior a common useful modeling tech-
nique are hybrid systems ([1, 2, 3, 4]). The methods are
able to handle up to 20 state variables, if the underlying lo-
cations use linear ordinary differential equations (ODEs).
Mostly they use reachability analysis to prove safety pro-
perties. However, monitor based approaches can be used to
prove properties written in LTL or CTL [5].
In this paper we propose a methodology to close the gap
between transistor level analog circuits and hybrid automa-
ta (HA) by automating an abstraction process. That means
we are generating in a controlled way HA-models:

• the method identifies from a sampled state space of a
nonlinear transistor level circuit few linear regions

• the regions are clustered and transformed into a hybrid
automata

• mathematically a back-transformation is constructed
to evaluate the results in the original variable space

2 Previous Work

The problem of generating an abstract model for a transis-
tor level circuit is very old and comes in several flavors,
e.g. as automatic behavioral modeling [6, 7]. These tech-
niques are not targeting hybrid automata. They are mainly
improving the simulation speed. The method in [8] models
the underlying DAE-system of electrical networks using
piecewise linear regions for each nonlinear element on the

fly. It suffers from using an abstract transistor model and
a limited number of transistors to be verified. However it
generates a complex hybrid automata on the fly preventing
a state explosion problem at initialization and during eva-
luation of a given input stimulus. Unfortunately the HA is
very complex as it is a cross product of all linearized regi-
ons of all nonlinearities.

Fig. 1 Overview of the introduced approach

Therefore an abstract linear region is not likely to be iden-
tified during the run of this method.
In our approach we want to use a more global view on the
block taking all nonlinearities at transistor level into ac-
count and directly look for large nearly linear regions in
the state space of the block. We rely on a formal verifica-
tion tool sampling with full BSIM accuracy on transistor
level called Vera originally used for equivalence checking
[9].
This Vera method samples a full state space of one or two



circuits under verification using an on the fly reachability
technique. The information about the sampled state space
contains

• the dynamics in a directed graph which models the
timing behavior,

• the linearized conductance and capacitance matrices:
G, C,

• the operating point~x and

• the eigenvalues λi, right and left eigenvectors F , E

for each point. These data is saved in an own special file
format to be exchanged between different verification and
visualization tools.

3 Overview

An outline of the introduced approach is presented in
Fig. 1. The approach starts from a sampled state space.
From these points, states of the hybrid automata are found.
This is done first by clustering the points according to their
eigenvalues. These groups of same eigenvalues are sepa-
rated into regions using the spatial proximity in the state
space. These few regions make up the states of the gene-
rated hybrid automata. Finally for each region guards and
invariants are calculated . The hybrid automata at hand can
now be used for reachability analysis or other formal tech-
niques. The result from the reachability analysis is than
transformed back to the original state space.

4 Abstraction of Analog Behavior

4.1 State Space Sampler
As stated, the state space sampler Vera linearized the non-
linear transistor level circuit in each point of the state space
to a SISO1 system described by the following equation:

C ·~̇x+G ·~x =~b ·u
y =~rT ·~x

(1)

with the input vector ~b, the input u, the output vector ~rT

and the output y. The linearized system can be transformed
into a canonical state space~xs as described in [9]:

s ·E ·C̃ ·F ·~xs +E · G̃ ·F ·~xs = E ·~̃b ·u
y =~̃rT ·F ·~xs.

(2)

with the transformation matrices F and E and the transfor-
med matrices and vectors marked by a tilde ·̃. F are the
right eigenvectors of the corresponding generalized eigen-
value problem, E is a proper calculated matrix also from
that problem (see [9]). Expanding and grouping the trans-
formed equation system leads to a Kronecker form:

1For easy of reading we use SISO system here. However the method
is also able to handle MIMO systems.

s ·
[
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~xs,Re
~xs,∞
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∞
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where I is the identity matrix, λ is a diagonal or band-
diagonal matrix with numerically increasing generalized
eigenvalues of the original system. The system is separa-
te into a reduced part (subscript Re) and a to be neglected
part (subscript ∞). By specifying a reduction order in Vera
and using dominant pole order reduction , equation (3) can
be further reduced to equation (4):

s ·
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]
+
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λ red 0

0 I
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~xs,∞

]
=
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]
·u

y =
[
~̃rT

Re
~̃rT

∞

][~xs,Re
~xs,∞

] (4)

where the rank of λ red indicates the order specified in Vera.
We build the HA using the reduced part with the transfor-
med reduced state variables~xs,Re ∈ IRorder. In the followi-
ng we will write~xs as an abbreviation for the reduced state
vector~xs,Re.

4.2 Identifying Linear Regions in Sampled
State Space Data

The approach at hand is to identify the linear regions in
the reachable state space using eigenvalues. As eigenvalues
characterize a linear system, they are suitable for this task.
In order to make use of an optimized Matlab clustering al-
gorithms, a parser will be used to translate the output of the
sample space discretizer Vera to a Matlab compatible syn-
tax. To bring this approach closer to the reader, a running
example will be used throughout this paper.

Fig. 2 Second order low pass filter with limitation of the
output at 1.5 V

Consider the circuit shown in Fig. 2. The circuit is passed
in spice syntax to Vera. The result from the sampling pro-
cess is shown in Fig. 3. It contains all reachable points in
the state space spanned by xs1 = Vnout −Vneg, xs2 = Vnin2
and Vin.
The large green points indicate DC points. The transitions
between the different points of this space are also shown as



Fig. 3 Discretization of the x state space performed by
Vera

edges. The colors in the figure are proportional to the va-
lues of the eigenvalues. As seen, the eigenvalues seem like
good candidates for the identification of 3 linear regions in
this discretization (red – green – red). The green colored
region correspond to the desired linear lowpass behavior.
The red colored regions correspond to a nonlinear system
behavior change due to a limiting function in the operatio-
nal amplifier.

4.3 Clustering using Eigenvalues
Using a k-means algorithm on the eigenvalues, the system
is clustered into groups of nearly equal eigenvalues. It
should be noted that both, real and imaginary parts, of
each eigenvalue is considered in this clustering. The basic
algorithm of k-means is extended using the silhouette
coefficient. Continuing the example of the netlist in Fig. 2,
the clustering in Fig.4 and Fig.5 are obtained, which yields
a system shown in Fig. 6.
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Fig. 4 The real part clustering of the eigenvalues. Sin-
ce the system from Fig. 2 has only real eigenvalues, the
imaginary part have no importance here

The next step is to separate the regions inside a group
because numerical similar eigenvalues can by spatially
far away. Three approaches have been used to handle this
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Fig. 5 The silhouette plot of the eigenvalues. As illustra-
ted, almost all eigenvalues have a silhouette coefficient
close to 1. For the 1619 points sampled for this example,
only 12 have a silhouette coefficient smaller than 0.8
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Fig. 6 State clustering using eigenvalues. Two groups can
be identified using the k-means algorithm

problem.

The first approach uses k-means a second time, with the
difference that instead using the eigenvalues the state va-
riables~xs are used. This approach suffers from the fact that
it depends on the discretization step size set in Vera. Thus
if the groups are not wide enough, unacceptable clustering
might occur.
The second and third approaches are both graph based
methods that make use of the transitions identified by Vera
to overcome this problem.

The second approach uses a breadth-first search on the
graph created by Vera, identifying the regions inside a
group by checking if they are connected. Considering our
previous example, the result of this approach is illustrated
in Fig. 7
This approach overcomes the problem of the first approach
by making use of the discretization graph. On the other
hand, this approach is time consuming, especially when
large amounts of points are sampled by Vera. This fact
comes from the drawback that all point are covered and
a linked list structure is used to save the information.



Fig. 7 State clustering using k-means and a breadth-first
approach. Two groups can be identified using the k-means
algorithm. The first group reveals to have 2 regions

Another major drawback results when few points are not
connected at all, or small regions of negligible size are
formed due to numeric errors. To overcome this problem,
a third approach will be introduced.

The third approach as stated, is also a graph based one.
More over, this approach makes use of the connection
graph created by Matlab. For our example, Fig. 8 shows the
connection graph of group 1. As seen, the two graphs are
not connected. Thus, there are 2 regions inside this group.
There is also only one region in group 2. Hence we get also
3 different regions.

Fig. 8 Plot of the connection graph in each group. There
are no connections between the 2 regions of group 1.

This approach solves the problem of small negligible re-
gions, by merging them into larger ones. This is done by
comparing the distances between the different points of the
different regions to the discretization step size.
Each region identified will later become a location in the
generated HA.

4.4 Calculating the Reference Points for the
HA

The operating points for each regions have to be identified
next for further calculations. This has to be done in both
state spaces:~x and~xs. More over, the operating points~xs,DC
in the ~xs domain are calculated from the operating points

in the ~x domain. From the given DC points in the ~x space,
the closest one in each region to the surrounding regions is
identified as~xDC and uDC. Then, after identifying the region
enclosing the center, the remaining points are recursively
calculated by solving the following equation for~xs,DC,k+1:

FRe,k~xs,DC,k+1 =~xDC,k+1−~xDC,k +FRe,k~xs,DC,k

+F∞,kE∞,k
~b(uDC,k−uDC,k+1)

(5)

Where F∞,k and E∞,k belong to the lower part of eq. (3)
and k numbers the regions. This is done starting from the
region containing the center~xs,DC,0. Hence, a smaller k in-
dex indicates that the region is closer to the center. Note
that the subindex "∞"for F and E represents submatrices
corresponding to the neglected and infinity eigenvalues of
the generalized eigenvalue problem.

4.5 Guards and Invariants
Based on the operating points found, all points from the
original can be transformed into the xs space. This is done
by applying equation (6) to all sampled points :

FRe,k~xs,i =~xi−~xDC,k +FRe,k~xs,DC,k

+F∞,kE∞,k
~b(uDC,k−ui)

(6)

Where i indicates an index of a point in region k. Now that
the~xs space is at hand, the regions are enclosed by convex
hulls. These hulls represent the invariants for each region.
What remains now is to calculate the guards. This is done
by searching for the presence of points from neighbor regi-
ons close to the edges a convex hull. After that, a dominant
guard for each neighbor region is selected by choosing the
guard that is in proximity to most neighbor points. These
guards are specified as halfspaces. For the example at hand,
the regions in the~xs space are illustrated in Fig. 9. The ope-
rating points~xs,DC are also shown in this figure. The guards
are not plotted for simplicity. Group 1 has 2 guards, one to
each region of group 2. Each of group 2 regions has one
guard to group 1. For each of the colored region, a loca-
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Fig. 9 Regions in the reduced state space~xs. The different
regions are shown in different colors. Convex hulls are
used to set the invariant and find the guards

tion is established with a system Matrix in Jordan normal



form. For example, if the system has order 3 with 3 dis-
tinct real eigenvalues at each location, than the states of the
hybrid automata are described as follows:

~̇xhyb,k =

 λ1 0 0
0 λ2 0
0 0 λ3

~xhyb,k +E ·~b · (u−uDC,k) (7)

For our example, the state space representations for the
first two locations are shown in equation (8) and (9). Loca-
tion 3 has the same state space representation as location 2
with the difference that uDC,3 = -3.5 V.

~̇xhyb,1 =

[
−10.1 0

0 −200.2

]
~xhyb,k +

[
5.1
−99.9

]
· (u) (8)

~̇xhyb,2 =

[
−14.8 0

0 −205.4

]
~xhyb,k +

[
5.2
−97.2

]
· (u−3.5)

(9)

With ~c representing the normal row vector to a halfspace
and d representing the offset to the center, such that
~c ·~xs ≤ d. E.g. the guards for location 1 are:~c = [−1,0.08]
with d = −1.43 and ~c = [1,0] with d = −1.5. The reset
value for xhyb after hitting a guard is equal to the xs,DC of
that region. The other guards and invariants are calculated
accordingly.

4.6 Back Transformation to the Original
State Space

With the created HA, we are able to perform a reachability
analysis in the~xs space. To better judge the results, the re-
sults can be transformed back into the original state space
~x. This is done with equation (10)

~x = FRe,k~xs,k +~xDC,k +F∞,kE∞,k
~b(u−uDC,k) (10)

Where k indicates the location of the system. It should be
noted that~xs,k in equation (9) represents a zonotope. Thus,
this equation represents a transformation and shifting of
the zonotopic solution found by the reachability tool.

4.7 Experimental Results
With the result at hand, we are able to perform a reachabi-
lity analysis for a hybrid system in Cora. For the example
introduced in Fig. 2, the results are illustrated in Fig. 10.
For the same input voltage, a simulation was performed in
the SPICE simulator Gnucap [10]. The results show good
accuracy, although the system is reduced to 3 linear loca-
tions. We are able to generate all voltages and currents in
the original SPICE system. However there are some jumps
in the back transformed voltages due to the nonlinearities
approximated by linear locations (see Fig 10 Vnout−neg).

4.8 Further Examples
The introduced algorithm is additionally used on a third
order low pass filter with output limitation at 1.5 V.

Fig. 10 Rechability analysis of the Hybrid automata crea-
ted with the stated approach 2 in grey.The Gnucap simu-
lation of the circuit shon in Fig. 2 are ploted in the colors
red and green

In the same manner as the previous example, the states
of the hybrid system, guards and invariants are identified.
Fig. 12 shows the invariants and guards of the reduced sys-
tem. It should be noted the guards represent hyperplanes.
The regions generated for a nonlinear transmission line
(RLCD) modeled by resistors, a capacitor, a diode and an
inductor is illustrated in Fig. 11. In this figure the guard
from group 1 to group 2 is shown. 2 Regions can be iden-
tified using the algorithm presented in this paper.
Table 1 summarizes the results of this approach including
a last example – a 2nd order bandpass circuit on transistor
level with 8 transistors at full BSIM accuracy.

5 Conclusion

In this paper, a new approach for the formal verification
of transistor level circuits has been enabled by introducing
an automatic abstraction and generation of a hybrid auto-
mata of these transistor level circuit. This approach ma-
kes use of model order reduction techniques and sampling
techniques to identify large linear regions in the nonline-
ar state space. Some algorithm has been introduced that
clusters state space points into connected regions and cal-
culates guards, variable shifts and invariants. The hybrid



Table 1 Results of the abstraction methodology for 4
analog circuits

2nd o.
low pass

3rd o.
low pass

RCLD Bandpass

Sampled points 1619 12256 30716 3801
Reachable points 501 1043 1437 2428
Order 2 3 2 8
Reduced order 2 3 2 2
Dim G 6x6 7x7 6x6 17x17
Points silhouette < 0.8 10 12 26 590
Percentage of outcasts 0.74 % 1 % 1.8 % 24 %
Parser time 0.72 5.99 21.17 1.664
Matlab read time 4.0 56.5 74.84 15.85
Abstraction time 2.65 10.83 2.66 3.97
A. time with plot 4.753 13.32 5.6 6.51
Max edges convex hull 8 56 10 12
locations 3 3 2 2
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Fig. 11 States of the hybrid automata of the RCLD circuit

Fig. 12 States of the hybrid automata of a third order low
pass filter

automata can finally be used for reachability analysis.
Two main advantages rise from this approach. The first one
is that the states of the hybrid automata are now linear.
This allows to use the result as a compositional automa-
ta, with fewer states than the original system. The second

main advantage of this approach is that it reduces the lar-
ge amount of sampled points into few regions that repre-
sent systems. Of course this approach has many challen-
ging topics, such as linearization errors, number of regions
to cluster, guards,and many more that will be analyzed in
the future. But still, this approach shows promising results
as shown throughout this paper.
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