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Abstract— We present the first work on the automated
generation of reachset conformant models for analog circuits.
Our approach applies reachset conformant synthesis to add non-
determinism to piecewise-linear circuit models so that they
enclose all recorded behaviors of the real system. To achieve
this, we present a novel technique to compute the required non-
determinism for the piecewise-linear models. The effectiveness of
our approach is demonstrated on a real analog circuit. Since the
resulting models enclose all measurements, they can be used for
formal verification.

I. INTRODUCTION

Since many safety-critical systems like autonomous vehi-
cles, robots collaborating with humans, and automated medical
systems, are controlled by circuits, there is an increasing de-
mand for their formal verification. In general, formal analysis
tools for dynamical systems (e.g., CORA [2], Flow* [5],
HyLAA [4], and SpaceEx [7]) require simple, yet conformant
models of the real system. Approximate circuit models are
often not conformant to the real system [19].

We present reachset conformant synthesis to add non-
determinism to an approximate circuit model so that the result-
ing model contains the set of all recorded system behaviors.
Since the required non-determinism is automatically computed
from measurements of the real circuit, the reachset conformant
model does not only enclose all differing system behaviors
due to approximation errors in the model, but also due to
disturbances, sensor noise, and inaccuracies in manufacturing.
In this work, we present the first approach for the automated
generation of reachset conformant models for analog circuits.

A. State of the Art

Reachset conformance testing is a recently-developed ap-
proach based on reachability analysis that can be applied to
check if a system model is conformant with measurements of
the real system [3], [12]. As visualized in Fig. 1, the behavior
of the real system (red line) is enclosed by the reachable set
of the model (gray area). It is shown in [12] that reachset
conformance is sufficient for the formal verification of safety
properties. Other works successfully applied reachset confor-
mance testing for autonomous vehicles [3], robot manipulators
[9], human arms [14], and pedestrians [10]. An extension to
reachset conformance testing is reachset conformant synthesis
as introduced in [3], where the required non-determinism is
determined automatically. Compared to [3], the authors of [9]
presented a more sophisticated reachset conformant synthesis
algorithm; however, the method is only applicable to linear
continuous system models, while [3] also works for nonlinear
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FIG. 1: VISUALIZATION OF THE REACHSET CONFOR-
MANCE CONCEPT.

systems. Since [9] and [3] are the only works on reachset
conformant synthesis so far, there does not yet exists a reachset
conformant synthesis algorithm for hybrid systems.

One method related to reachset conformance is equivalence
checking, which checks if two analog circuits exhibit the same
behavior under the same input excitation [15]. Equivalence
checking is often applied to verify the equivalence between a
behavioral and an accurate circuit model [13], [15].

One major advantage of the approach presented in this work
is that it can be applied to arbitrary dynamic piecewise linear
(PWL) circuit models. PWL models partition the state space
into regions, where the system behavior for each region is
described by a linear ordinary differential equation, see e.g.,
[6], [11]. More recent approaches try to use these models
for formal verification. The work in [20] directly generates
these models, but concentrates on oscillator circuits without
inputs. The approach in [18] does not consider PWL models,
but reformulates the verification problem as a satisfiability
problem.

The nominal models used in this work are generated from
[16] based on eigenvalue clustering and the local linearization-
based approach from [8].

B. Notation

Sets are denoted by calligraphic letters, matrices by up-
percase letters, vectors by lowercase letters, and lists by bold
uppercase letters. Given a list L, the operations remove(L, l)
and add(L, l) remove and add the element l, respectively.
The left multiplication of a matrix M ∈ Rm×n with a set
S ⊂ Rn is defined as MS = {Ms | s ∈ S}, the Minkowski
addition of two sets S1 ⊂ Rn and S2 ⊂ Rn is defined as
S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}, and the Cartesian
product of two sets is denoted by S1 × S2.

II. REACHSET CONFORMANCE

The goal of reachset conformant synthesis is to add non-
determinism to a nominal system model such that the resulting
model includes all recorded behaviors of the real system. The
nominal system model is given as

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm,
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where x is the state vector and u is the input vector. To
preserve time information during reachability analysis, we
introduce the extended state vector z(t) = [x(t) t]T , so that

ż(t) =

[
f(x(t), u(t))

1

]
= f̂(z(t), u(t)). (1)

We add non-determinism U = V × W ⊂ R2n through
uncertain additive inputs V ⊂ Rn and uncertain measurement
errors W ⊂ Rn. Adding V to (1) results in the differential
inclusion

ż(t) ∈
{
f̂(z(t), u(t)) +

[
v
0

] ∣∣∣∣ v ∈ V}, (2)

where v is constant over time. We model PWL models by
hybrid automata:

Definition 1: (Hybrid Automaton) A hybrid automaton H
with p discrete modes consists of:

1) A list F = (f̂1(·), . . . , f̂p(·)) storing the differential
equations ż(t) = f̂i(·) describing the dynamic in each
mode i = 1, . . . , p.

2) A list S = (S1, . . . ,Sp) storing the invariant set Si ⊂
Rn+1 for each mode i = 1, . . . , p.

3) A list T = (T1, . . . , Tq) storing the transitions Tj =
〈Gj , rj(·), sj , gj〉T , j = 1 . . . q between discrete modes,
where Gj ⊂ Rn+1 is the guard set, rj : Rn+1 → Rn+1

is the reset function, and sj , gj ∈ {1, . . . , p} are the
indices of the source and target modes, respectively.

For a concise notation, we use the shorthand H = 〈F,S,
T〉HA for a hybrid automaton. Given the non-determinism U
for a hybrid automaton we denote by Ui = Vi ×Wi the non-
determinism for mode i. The state of a hybrid automaton is
defined as σ(t) = 〈z(t),m(t)〉S , where z(t) ∈ Rn+1 is the
continuous state, and m(t) ∈ {1, . . . , p} is the discrete state.

The evolution of a hybrid automaton is described informally
as follows: Given an initial state σ0 = σ(0) = 〈z0,m0〉S with
z0 ∈ Sm0 , the continuous state z(t) evolves according to the
flow function f̂m0

(·) of the mode m0. If z(t) is within the
guard set Gj of a transition Tj = 〈Gj , rj(·), sj , gj〉T ∈ T
with sj = m0, the transition to the mode gj is taken and
the continuous state z(t) is updated according to the reset
function rj(·). Afterward, the evolution of the continuous state
continues according to the flow function f̂gj (·) of mode gj
until the next transition is taken. We denote the trajectory of
the continuous state for the evolution of the hybrid automaton
described above by ξ(t, u(·), σ0, v), where v ∈ V is the model
uncertainty.

Definition 2: (Reachable Set) The reachable set at time t for
a hybrid automaton H , the model uncertainty U , a nominal
system input un(·), a set of initial continuous states Z0 ⊂
Rn+1, and the initial mode m0 is

RH(t, un(·),Z0,m0,V)

=
{
ξ(t, un(·), 〈m0, z0〉S , v) | z0 ∈ Z0, v ∈ V

}
,

and the bloated reachable set is

BH(t, un(·),Z0,m0,U) =

p⋃
i=1

RH,i(t, un(·),Σ0,V)⊕Wi,

where RH,i(t, un(·),Z0,m0,V) is the part of the reachable
set belonging to the i-th mode.
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FIG. 2: EXAMPLE DEMONSTRATING THE ITERATIONS OF
ALG. 1 FOR A HYBRID AUTOMATON WITH TWO MODES.

The reachable set for a differential inclusion as defined by (2)
is denoted by Rf̂ (t, un(·),Z0,V).

We denote by µ(t, σ(0), un(·)) the measured trajectory of
the system state σ(t) for the system input un(·). For con-
formance checking, a test suite is generated by measuring h
trajectories µ(t, σ0,l, un,l(·)) for different input signals un,l(·),
l = 1, . . . , h at sampled times t0 = 0, . . . , tk = te:

Yl =
(
µ(t1, σ0,l, un,l(·)), . . . , µ(tk, σ0,l, un,l(·))

)
,

where te is the time horizon. For a concise notation we use
the shorthand Ml = 〈Yl, un,l(·)〉M for a measured trajectory
Ml consisting of the list Yl storing the measurements and the
corresponding input signal un,l(·).

The goal of reachset conformant synthesis is to choose
the model uncertainty U such that the volume of the final
bloated reachable set is minimized while all measurements
are enclosed by the bloated reachable set:

min
U

h∑
l=1

volume(BH(te, un,l(·), z0,l,m0,l,U))

s.t. ∀l = 1 . . . h, ∀j = 0 . . . k

zj,l ∈ BH(tj , un,l(·), z0,l,m0,l,U),

(3)

where 〈zj,l,mj,l〉S = µ(tj , σ0,l, un,l(·)) is the measured state
and the operation volume returns the volume of a set.

A. Reachset Conformance for Hybrid Automata

We first present Alg. 1 for reachset conformant synthesis
of hybrid automata. Instead of solving (3), Alg. 1 heuristi-
cally computes a feasible and close to optimal solution in a
computationally efficient way by obtaining the required model
uncertainty for each discrete mode independently: We start
with mode 1 and select all measurements that correspond to
mode 1 and in addition belong a to measured trajectory that
starts in mode 1 (see Fig. 2 (a)). Next, we adapt the uncertainty
of mode 1 in such a way that the reachable set encloses all
selected measurements (see Fig. 2 (b)). Finally, we iteratively
repeat this procedure for all discrete modes of the hybrid



automaton until all measurements have been considered (see
Fig. 2 (c) and (d)).

The inputs to Alg. 1 are the nominal hybrid automaton
H , the initial model uncertainty U , and the measurements
M. Alg. 1 uses a queue that stores all measurements for
which conformance is not yet guaranteed. This queue is
initialized with the measurements M. The while-loop in line
4 of Alg. 1 iterates until the queue is empty, in which case all
measurements are reachset conformant.

Algorithm 1 reachConfHA(H,U ,M)

Require: Hybrid automaton H = 〈F,S,T〉HA with p modes,
where F = (f̂1(·), . . . , f̂p(·)), initial model uncertainty U , list
of measurements M = (M1, . . . ,Mh).
Ensure: Reachset conformant model defined by the nominal
system model H and the model uncertainty U .

1: for Mj := 〈(σ0, . . . , σk), un(·)〉M ∈M do
2: ẑ0,j ← z0
3: end for
4: while M 6= ∅ do
5: for i← 1 to p do
6: M← ∅, M← ∅, X← ∅, T← ∅
7: for Mj := 〈(σ0, . . . , σk), un(·)〉M ∈M do
8: if m0 == i then
9: M← remove(M,Mj)

10: X← add(X, x̂0,j), T← add(T, t̂0,j)
11: if ∃l ∈ {0, . . . , k} ml 6= i then
12: l∗ ← minl∈{0,...,k}ml 6= i
13: M j ← 〈(σ0, . . . , σl∗), un(·)〉M
14: M j ← 〈(σl∗+1, . . . , σk), un(·)〉M
15: M← add(M,M j)

16: M← add(M,M j)
17: else
18: M j ← 〈(σ0, . . . , σk), un(·)〉M
19: M← add(M,M j)
20: end if
21: end if
22: end for
23: Ui ← reachConfMode(fi(·),M,X,T,Ui)
24: for M j := 〈(σ0, . . . , σk), un(·)〉M ∈M do
25: R̃ ← Rf̂i([0, t0 − t̂0,j ], un(t+ t̂0,j), ẑ0,j ,Vi)
26: for Tl := 〈Gl, rl(x), sl, gl〉T ∈ T do
27: if sl == i ∧ gl == m0 ∧ R̃ ∩ Gl 6= ∅ then
28: ẑ0,j ← rl(center(R̃ ∩ Gl))
29: break
30: end if
31: end for
32: Mj ←M j , M← add(M,Mj)
33: end for
34: end for
35: end while

We initialize the starting point for the reachable set com-
putation ẑ0,j with the continuous part of the first measured
state σ0 in line 2 of Alg. 1. In each iteration of the while-loop
in line 4, the for-loop in line 5 iterates over the p modes of
the hybrid automaton H . Before we can compute the required
model uncertainty for the current mode i, we have to extract
the measurements that belong to mode i. Therefore, we select
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FIG. 3: EXAMPLE DEMONSTRATING THE COMPUTATION
OF THE INITIAL SET FOR THE NEXT MODE.

from the queue M all measured trajectories Mj for which the
first hybrid state σ0 belongs to mode i (see line 8 of Alg. 1).
These measurements are split in lines 13, 14, and 18 of Alg. 1
into one part M j with measurements belonging to mode i,
and one remainder M j . The measurements in M j are used to
compute the required model uncertainty (see line 23 of Alg. 1),
while the measurements in M j are added to the queue of not
yet considered measurements (see line 32 of Alg. 1)

Using the extracted measurement parts M, the uncertainty
Ui for the current mode i is updated in line 23 of Alg. 1
with the operation reachConfMode, whose implementation
is described later in Sec. II-C. The lists X and T store, for
each measured trajectory in M, the corresponding initial con-
tinuous state and initial time for the reachable set computation,
respectively.

It remains to calculate the new starting point ẑ0,j for the
reachable set computation for all measured trajectories M j ∈
M. This is is illustrated by the example shown in Fig. 3.
First, the reachable set R̃ for the current measurement M j is
computed according to line 25 of Alg. 1 (see Fig. 3 (a)). Using
the calculated reachable set R̃, we loop over all transitions
Tl ∈ T of the hybrid automaton (see line 26 of Alg. 1) to
select the transition that is taken by the measured trajectory
M j . For the example shown in Fig. 3, the measured trajectory
takes transition T2 with guard set G2 (see Fig. 3 (b)). We
therefore apply the reset function r2(·) to obtain the starting
point ẑ0,j = r2(center(R̃ ∩ G2)) (see Fig. 3 (c)) according
to line 28 of Alg. 1, where operation center returns the
center of a set.

B. Reachset Conformance for Analog Circuit Models

There are two main types of errors that contribute to differ-
ing behaviors between the PWL model and the real system:
1) the abstraction error made by using an approximative PWL
model, and 2) real-world errors resulting from disturbances,
sensor noise, and inaccuracies in the manufacturing. Our
uncertainty model is constructed so that the abstraction error
is mainly captured by the uncertain additive inputs V and
the real-world errors are mainly captured by measurement
uncertainties W . The overall approach for analog circuits
therefore first performs reachset conformant synthesis using
simulations of the accurate system model to compute feasible
sets V1, . . . ,Vp, so that the reachable set encloses the simu-
lations (see Fig. 4 (a)). Then, reachset conformant synthesis
uses measurements of the real system to compute feasible sets



W1, . . . ,Wp, so that the bloated reachable set encloses the
measurements (see Fig. 4 (b)).
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FIG. 4: VISUALIZATION OF OUR REACHSET CON-
FORMANT SYNTHESIS APPROACH AS DESCRIBED IN
SEC. II-B.

C. Reachset Conformance for Linear Continuous Systems

Contrary to reachability analysis for hybrid automata, reach-
ability analysis for a single mode preserves time information
so that the clock that we introduced with the extended state
vector z(t) in (1) is not required. We therefore use the original
state x(t) instead of the extended state z(t) for reachset
conformant synthesis of a single mode. For PWL models,
the flow function f(·) is linear for each mode of the hybrid
automaton:

ẋ(t) = f(x(t), u(t)) = Ax(t) +Bu(t) + c, (4)

where A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn. With the linear
dynamics from (4), the reachable set and the bloated reachable
set as defined in Def. 2 are according to [1, Sec. 3.2] computed
as

Rf (t, un(·),X0,V)

= eAtX0 ⊕
∫ t

0

eA(t−τ)(Bun(τ) + c)dτ︸ ︷︷ ︸
H

⊕
∫ t

0

eA(t−τ)dτ︸ ︷︷ ︸
E

V

= H⊕ EV
(5)

and
Bf (t, un(·),X0,U) = H⊕ EV ⊕W, (6)

where X0 ⊂ Rn is the initial set and U = V × W is the
model uncertainty. To solve (3), we present a computationally
efficient implementation of reachConfMode described in
Alg. 2. The quality of the obtained solution is demonstrated
by numerical examples in Sec. IV.

Let us first introduce the box operation, which encloses a
set by an axis-aligned box. The for-loop in line 1 of Alg. 2
iterates over all measured trajectories Mi ∈ M, and the for-
loop in line 2 of Alg. 2 iterates over all measurements zj ∈
Rn+1 of a measured trajectory Mi. In line 3 of Alg. 2, we
compute the reachable set at the time of the measurement tj .

As described in Sec. II-B, the additive uncertainty V and
the measurement uncertainty W are determined separately. In
lines 4 - 13 of Alg. 2, we therefore update either V or W ,
depending on the type of the measurement Mi returned by the
operation type.

To prove that Alg. 2 is correct, we have to show that the up-
dated set of additive uncertainties V∗ satisfies xj ∈ H⊕EV∗,

Algorithm 2 reachConfMode(f(·),M,X,T,U)

Require: Nominal system model f(x, u) = Ax+Bu+ c, list
of measurements M = (M1, . . . ,Mh), list of initial sets X =
(X0,1, . . . ,X0,h) and list of initial times T = (t0,1, . . . , t0,h)
for each measurement, initial model uncertainty U .
Ensure: Reachset conformant model defined by the nominal
system model f(·) and the updated model uncertainty U∗.

1: for Mi := 〈Y, un(·)〉M ∈M do
2: for zj ∈ Y do
3: H⊕ EV ← Rf (tj − t0,i, un(t+ t0,i),X0,i,U)

using (5)
4: if type(Mi) == ”simulation” then
5: b← diffFromSet(H, xj)
6: v̂ ← solution of Ev̂ = b
7: V∗ ← box(V ∪ v̂)
8: V ← V∗
9: else if type(Mi) == ”measurement” then

10: ŵ ← diffFromSet(H⊕ EV, xj)
11: W∗ ← box(W ∪ ŵ)
12: W ←W∗
13: end if
14: end for
15: end for
16: U∗ ← V ×W

and the updated set of measurement uncertaintiesW∗ satisfies
xj ∈ H⊕EV⊕W∗ for all measurements xj . Since the proofs
for both cases are very similar, we only consider the updated
set of additive uncertainties V∗ due to space limitations. From
the reachable set H ⊕ EV∗, only the summand EV∗ can
be influenced by the set of uncertainties V∗. To determine
a suitable set V∗, we therefore first compute the difference b
between the current measurement xj and the set H in line 5
and of Alg. 2 using

diffFromSet(S, p) = p− argmin
s∈S

‖p− s‖2, (7)

where p ∈ Rn is a point and S ⊂ Rn is a set. The feasible
uncertainty V∗ is obtained by the following theorem:

Theorem 1: Given two sets S1 ⊂ Rn and S2 ⊂ Rn,
as well as a point p ∈ Rn, it holds that p ∈ S1 ⊕ S2 if
diffFromSet(S1, p) ∈ S2.

Proof According to (7), it holds that

a = diffFromSet(S1, p) = p− argmin
s1∈S1

‖p− s1‖2︸ ︷︷ ︸
:=s∗1∈S1

.

If a = diffFromSet(S1, p) = p− s∗1 ∈ S2 it further holds
that

p = p− s∗1︸ ︷︷ ︸
=a∈S2

+ s∗1︸︷︷︸
∈S1

∈ {p− s∗1︸ ︷︷ ︸
∈S2

+s1 | s1 ∈ S1}

⊆ {s1 + s2 | s1 ∈ S1, s2 ∈ S2} = S1 ⊕ S2,

which proofs that p ∈ S1 ⊕ S2. �
With b = diffFromSet(H, xj) as computed in line 5 of

Alg. 2, it holds according to Thm. 1 that xj ∈ H ⊕ EV∗ if
b ∈ EV∗. Since we use the box operator in line 7 of Alg. 2



FIG. 5: REAL PART OF THE FIRST EIGENVALUE FOR THE
ANALOG CIRCUIT SHOWN IN FIG. 6.

to enclose the set V ∪ v̂ with a box, the updated uncertainty
set V∗ = box(V ∪ v̂) satisfies

V ⊆ V∗ and v̂ ∈ V∗.

Since the point v̂ computed in line 6 of Alg. 2 satisfies Ev̂ = b,
it therefore holds that

b = Ev̂
(v̂∈V∗)
∈ EV∗,

which proves that xj ∈ H⊕EV∗ according to Thm. 1. Next,
we describe how we identify the nominal model.

III. AUTOMATED GENERATION OF BEHAVIOR MODELS
FOR ANALOG CIRCUITS

The quality for conformant models generated by reachset
conformant synthesis mainly depends on the accuracy of the
behavior model of the circuit. In this work, we consider two
approaches for the PWL model generation of analog transistor
level circuits: eigenvalue clustering, and local linearization of
the non-linear circuit.

A. Eigenvalue Clustering

To generate the behavior model using eigenvalue clustering,
the approach presented in [17] and [16] is used. The number
of different modes for the hybrid automaton is identified using
the group and region identification described in [16]. The
principle of eigenvalue clustering is visualized in Fig. 5 for
the circuit shown in Fig. 6. One major advantage of this
approach is the model order reduction: given a circuit with
q states, a behavior model with n� q states is generated. For
the example from Fig. 6, the underlying dominant pole order
reduction reduces the system order from q = 19 to n = 2,
eliminating algebraic equations as well as poles with large
imaginary part.

B. Local Linearization

In contrast to eigenvalue clustering, local linearization [8]
utilizes a white box model. Based on the original circuit
topology, the behavioral model is composed of static non-
linear PWL device models and linear dynamic device models.
This enables the manual refinement of the model by adding
additional dynamic devices or more accurate PWL models
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FIG. 6: ANALOG CIRCUIT USED FOR THE NUMERICAL
EXAMPLE: SECOND-ORDER LOW-PASS FILTER.

with more segments. A PWL device model is generated by
first sampling the device with high accuracy and then reducing
the number of linear segments with optimization algorithms
such as Simulated Annealing.

IV. NUMERICAL EXAMPLE

In order to demonstrate the effectiveness of our approach,
we consider the example of a second-order low-pass filter (see
Fig. 6). For the accurate system model the operation amplifier
is modeled in SPICE with a LMC6484 described at transistor
level. The resistors R1, R2, and R3 are chosen as 4.7kΩ,
10kΩ, and 4.5kΩ, while the capacitors C1 and C2 are set
to 0.1µF and 1µF , respectively.

Using the model generation method in Sec. III-A, three
modes for the hybrid automaton can be identified as shown in
Fig. 5. By applying the method presented in Sec. III-B on the
example circuit (see Fig. 6), an alternative model is generated.
Scanning the operation amplifier’s characteristic leads to a
PWL devise model using six segments, which results in a
hybrid automaton with six modes.

Eigenvalue Clustering
Local Linearization
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FIG. 7: REACHABLE SETS OF THE REACHSET CONFOR-
MANT MODELS FOR THE INPUT SIGNALS un(t) = 4.5V
(TOP) AND un(t) = 4Vsin(20πt) (BOTTOM). THE COR-
RESPONDING MEASUREMENTS ON THE REAL CIRCUIT
ARE DEPICTED IN RED.

Our test suite consists of simulation results from an accurate
system model as well as measurements from the real circuit
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FIG. 8: REACHABLE SETS OF THE REACHSET CONFOR-
MANT MODELS FOR ALL INPUT SIGNALS u(·) ∈ [0,3]V.
THE FORBIDDEN REGION DEFINED BY THE SPECIFICA-
TION IN (8) IS DEPICTED IN RED.

for the input signals un,1(t) = 3V , un,2(t) = 4V , un,3(t) =
3V sin(ω1t), un,4(t) = 3V sin(ω2t), un,5(t) = 4V sin(ω1t),
and un,6(t) = 4V sin(ω2t), where ω1 = 2π and ω2 = 200π.
Using this test suite and the generated nominal system models,
we apply reachset conformant synthesis to generate a reachset
conformant model of the analog circuit. Performing reachset
conformant synthesis in MATLAB on a 2.9GHz quad-core i7
processor with 32GB memory takes 91 seconds for the model
generated by eigenvalue clustering, and 88 seconds for the
model generated by local linearization.

As shown in Fig. 7, the reachable sets for both generated
reachset conformant models enclose all measurements for the
input signals un(t) = 4.5V and un(t) = 4V sin(20πt), even
though these input signals are not included in the test suite
considered for reachset conformant synthesis.

The generated reachset conformant models can be used to
formally verify properties of the real low-pass filter. As an
example, we consider the specification that the system output
for all recorded input signals in the set [0, 3]V should never
violate the lower bound −1.5V :

∀t ∈ [0, 0.2]s ∀u(·) ∈ [0, 3] : ξy(t, u(·)) > −1.5, (8)

where ξy(t, u(·)) denotes the trajectory of the system output at
time t for the input signal u(·), and u(·) ∈ [0, 3] is a shorthand
for u(t) ∈ [0, 3] ∀t ∈ [0, 0.2]s. To prove that the real low-pass-
filter satisfies the specification, we compute the reachable set
for the reachset conformant model using the toolbox CORA
[2]. The results are shown in Fig. 8. Since the reachable
set does not intersect the forbidden region defined by the
specification in (8) (see Fig. 8) it holds that the specification
is satisfied by the real circuit.

V. CONCLUSION

We introduced the first approach for the fully automated
generation of reachset conformant models for analog circuits.
The resulting conformant model is well suited for formal
verification since it is based on a simplified PWL abstraction
of the circuit dynamics. For reachset conformant synthesis, we
presented the first algorithm to calculate the required model
uncertainty for hybrid systems. Furthermore, we introduced
a reachset conformance concept and uncertainty model that
is well suited for analog circuits, and in addition proposed
a novel reachset conformant synthesis algorithm for linear
continuous systems. Finally, we demonstrated the effective-
ness of our overall approach on a real analog circuit, where

we used two recently-developed algorithms for the automated
generation of PWL circuit models.
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