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Abstract—Safety-relevant analog implementations of, e.g.,
sensor-actuator interfaces, demand formal verification
methodologies. However, a direct formal verification is not
feasible due to the complexity and nonlinearity of analog
circuits. This paper employs a state space-based nonlinear model
order reduction (MOR) approach with well-suited model order
reduction techniques for linearization points. From the original
method of sampling the nonlinear state space and clustering
the sampled points into regions with similar dynamic behavior,
we replaced the dominant pole MOR with a modified Krylov
subspace projection method based on Padé-via-Lanczos (PVL).
The reduced model quality improves and becomes numerically
stable enough to handle analog circuits with hundreds or more
(parasitic) poles. The generated Hybrid Automata (HA) can
be utilized for formal verification via reachability analysis. We
demonstrated the effectiveness of our approach on four nonlinear
analog circuits accomplishing significantly less approximation
errors of 25X compared to other MOR methods.

Index Terms—Formal Verification, Model Order Reduction,
Nonlinear Analog Circuits

I. INTRODUCTION

Robust formal verification techniques are crucial for safety-
critical applications such as medical devices and autonomous
driving. However, the complexity and nonlinearity of its
analog circuits’ transistor models hinder the formal verification
methods. These nonlinear circuits can be modeled at high
abstraction levels with multiple linear regions, creating a hybrid
automaton (HA) - at best, with automatic model order reduction
(MOR) techniques.

This paper proposes a new approach for the MOR of
nonlinear analog circuits using a state space approach, as shown
in Fig. 1. The general method starts by sampling the nonlinear
analog circuit’s state space. The locations of the HA are
identified by clustering the sampled points into different groups
and regions based on their eigenvalues using K-means. A MOR
on representative points in that region is performed for each
region. We propose two alternative MOR algorithms replacing
the existing dominant pole order reduction. Additionally, we
adapt the following HA generation to the new algorithms.
The generated HA exhibits a linear behavior described by a
state space representation in each region. Finally, guards and
invariants of each region are defined to prepare the HA for
reachability analysis and transform the generated behavioral
model back to the original state space. The latter enables formal
verification of given specifications. Our contributions to this
paper are:

• An improvement of the abstraction process to HA by
replacing the dominant pole order reduction with an
enhanced PVL and a third method, balanced truncation,
for comparison reasons.
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Fig. 1: The proposed approach overview. Starting from a nonlinear analog
circuit, sampling the state space enables linearizing the circuit in each sample
point. Then clustering the sampled points according to their eigenvalues to
generate a hybrid automaton (HA) to be utilized for reachability analysis or
other formal verification methods.

• An explicit algorithmic description and evaluation of the
three methods using four nonlinear examples.

• Formal verification of the generated hybrid automata.
The results section shows that the generated behavioral

model preserves the original system functionality and presents
superior performance.

II. PREVIOUS WORK

Multiple linear model order reduction methods are present
in the literature. The modal reduction methods, such as
Dominant Pole MOR (DP), where we first convert the system
realization to a diagonal realization, then remove the least
significant modes. The Balanced Truncation (BT) methods start
with a balanced realization of the system, where each state
is equally observable and controllable. The least significant
states are directly truncated [1],[2]. Finally, Krylov subspace
methods, such as Arnoldi, Lanczos, and PVL, where the
reduced system transfer function retains its main parameters,
the moments. For nonlinear model order reduction, the problem
is more challenging. [3] introduced the trajectory piecewise
linear modeling approach. It is further improved by [4]
using polynomials for each operating point, resulting in weak
nonlinear modeling. [5] presents an actual approach using
Krylov subspace methods and k-means clustering to group
operating points from one or several transient analyses to one
representative. However, state space methods provide better
control over the modeled part and the nonlinearities compared



to transient trajectory-based methods. It allows piecewise linear
hybrid automaton modeling of the whole state space and
facilitates formal proofs [6]. The basic modeling technique
proposed in [7] integrates the dominant pole MOR in an
underlying state space reduction method. Its method suffers
from imprecise static gain approximation if the reduction ratio
is large and many poles are at lower frequencies.

To address the problems mentioned above, we extend the
state space reduction approach by leveraging the Padé-via-
Lanczos (PVL) method initially proposed in [8]. We incorporate
various follow-up improvements, such as ensuring that the
model is passive and stable depending on the underlying
circuit’s known properties and extending it to support the
underlying nonlinear MOR using state spaces.

III. MODEL ORDER REDUCTION

The Padé-via-Lanczos (PVL) algorithm proves its superior
performance in the analysis of large linearized circuits
compared to other MOR methods [8]. It can provide a very
accurate approximation of the circuit transfer function over a
wide frequency range. Starting from the original m-order linear
SISO system after sampling the nonlinear state space:

C ·⃗̇x =−G · x⃗+ b⃗ ·u (1)

y = r⃗T · x⃗

Where x⃗ ∈ Rn is the vector of n variables in the system (for
analog circuits, mainly voltages and currents), G,C ∈Rn×n are
the linearized conductance and capacitance matrices, the system
input u and the output y. b⃗, and r⃗T are the input and output
vectors, respectively. One can choose a fixed expansion point
s0 such that (G+s0C) is non-singular. With that, we can define
M and R in general as follows:

M =−(G+ s0C)−1C (2)

R = (G+ s0C)−1b (3)

with M ∈ Rn×n and R ∈ Rn. In our target analog circuits, the
frequency range of interest is in the lower bound. Hence, we
chose s0 = 0; then we can rewrite the description for the original
system in (1) as:

−M ·⃗̇x =−I · x⃗+R ·u (4)

y = r⃗T · x⃗

Where I ∈ Rm×m is the identity matrix. Applying the Lanczos
process for the reduction of the matrix M as presented in
[8] generates the square matrix Tq ∈ Rq×q which is the best
approximation to M, and the Lanczos vectors vq and wq. The
approximation guarantees that Tq match the maximal number
of moments in M. The generated reduced q-order linear system:

−Tq ·⃗ ż =−I ·⃗ z+ e⃗T1 ·u (5)

y = r⃗T ·R · e⃗1 ·⃗ z

where e⃗1 = [1,0, . . . ,0]T ∈ Rq is the first unit vector in the
reduced space Rq and z⃗ ∈ Rq is the state reduced vector.
A further step is required to simplify our reduced model to
a hybrid automaton conform form. An Eigendecomposition
carries it out as follows:

Tq = Sq ·∆q ·S−1
q (6)

∆q = diag(λ1,λ2, . . . ,λq) (7)

That leads to a final reduced system:

ˆ̇⃗z = ∆q
−1 · ˆ⃗z−∆q

−1 ·Sq · e⃗T1 ·u (8)

y = r⃗T ·R · e⃗1 ·Sq
−1 · ˆ⃗z

To evaluate the reachability analysis results and compare
them with the original circuit simulation results, a
backtransformation from the ẑ space to the original circuit
variables can be easily performed by: x⃗ = vq ·Sq

−1 · ˆ⃗z.

IV. NONLINEAR MODEL ORDER REDUCTION USING STATE
SPACE TECHNIQUE

We aim to generate a low-dimension Hybrid Automaton
(HA) from nonlinear analog circuits for formal verification
approaches. Additionally, a behavioral model can be
automatically generated for system simulation. The base
for both goals is sampling the nonlinear state space to gain
knowledge of all reachable behavior. This state space sampling

invariant

Fig. 2: Steps in generating HA from sampled points in state space: a)
Eigenvalues in projected state space leading to region identification, b)
generated HA, c) guards and invariants shown in reduced state space.

is the first step of our approach, as shown in Fig. 1. Second,
we cluster the operating points in the sampled state space
using Kmeans into multiple groups based on the system
eigenvalues. The optimal number of clusters is evaluated using
the silhouette coefficient. Multiple regions can be identified
for each group based on the connection graph expressing the
dynamics in the state space. We use a second-order lowpass
filter as an example to demonstrate the second step. The
result of the clustering is illustrated in Fig. 2 a) where λ1
is the system’s first eigenvalue, (Vnin2) and (Vnout −Vneg) are
the circuit’s main state variables. The system in Fig. 2 a)
is clustered into two groups, while group1 consists of two
regions. Each region defines a location in the generated HA



where the sampled points exhibit similar behavior. We select
a representative operating point from each location’s points to
gain processing speedup. The operating point of each region
is chosen as the closest DC point to the global center at
zero input voltage. We apply the PVL model order reduction
approach on each region operating point’s linearized G and C
matrices. Hence, each region is automatically abstracted by
a reduced-order linear ordinary differential equation (ODE)
represented in three locations of the HA shown in Fig. 2
b). An invariant for each location of the HA is computed,
describing the region where the differential equation is valid.
Additionally, we generate a set of guards describing a location
transition and a reset or jump function for each region. In Fig.
2 c), the guards and invariants are shown in the reduced state
space for all the locations. Finally, we can run a reachability
analysis to verify the abstracted model behavior using the
CORA tool formally [9] on the generated HA.

V. EXPERIMENTAL RESULTS

We have evaluated our approach on a nonlinear transmission
line (TL), an extracted netlist of a buffer, a bandgap voltage
reference (Bg), and an active second-order lowpass filter (LPF).
We describe all circuits on the transistor level with BSIM
transistor models. They all have nonlinear behavior: some will
go into a limiting mode (transmission line, buffer, low pass
filter) while the bandgap leaves the wanted operating point,
e.g., when the supply voltage goes down. We perform all
tests in MATLAB environment along with the vera state space
sampling tool [10] implemented in C++ and directly integrated
with the circuit simulator Gnucap [11]. The main properties of
the four examples are listed in Tab. I, along with a comparison
of the run time of each of the implemented MOR methods.
For the sake of comparison, we are only comparing the time
required to run the model order reduction. Dominant Pole is
faster than the other two methods since its computational cost is
relatively less. However, as proven in all the results, DP fails to
preserve the original system static gain and generates a reduced
system with significant approximation errors, as shown in Tab.
II. On the other hand, the proposed PVL consumes much less
time than BT, making PVL the method of choice for model
order reduction of large dynamic systems.

TABLE I: Description of the four nonlinear circuits

TL Buffer Bandgap LPF

Original order (n) 38 882 90 24
Original finite order (m) 22 681 37 12
Reduced order (q) 2 4 3 2
Num. of transistors 2 97 43 11
Num. of passive elements 30 4030 50 5
Num. of regions 3 2 2 3
fmin (Hz) 0 0 0 0
fmax (Hz) 1.52E3 5.66E8 7.86E6 1.92E9
DP run time (sec) 0.0308 6.8093 0.0245 0.0316
BT run time (sec) 0.0590 17.585 0.0595 0.0675
PVL run time (sec) 0.0270 7.4535 0.0378 0.0385

Fig. 3 compares the frequency response of the transmission
line model shown in Fig. 1 with its reduced systems generated
from the three implemented MOR methods. PVL and BT
preserved the original DC gain of 12.5833 through reduction,
resulting in a DC gain of 12.5833 and 12.5834, respectively. On
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Fig. 3: The nonlinear transmission line frequency response in (dB) reduced to
order (2) in location g2r1, where this location presents the linear middle region

the other hand, the DP produced a DC gain of 11.8463 and even
higher approximation errors at higher frequencies. However, the
frequency range of interest is between 0 and 1.5kHz, where the
PVL outperforms other MOR methods as detailed in Tab. II.

Fig. 4: The buffer frequency response reduced to order (4) in location g1r1,
where this location presents the desired linear region in the circuit output
voltage as shown in the smaller box.

The frequency response of the buffer circuit shown in Fig. 4
outlines the main drawback of the Dominant Pole’s inability
to preserve the DC gain. On the other hand, BT and the
proposed PVL can easily match the original circuit stationary
gain. However, the BT at higher frequencies > 10MHz fails to
maintain the original circuit’s nonlinear behavior.

We compare all three MOR methods in Tab. II for each
example in all locations of the generated HA. The relative
approximation error is calculated over a sampled frequency
range between fmin and fmax reported in Tab. I. One can see
that the PVL method outperforms the others in nearly all
regions of the HA, especially for critical cases where many
parasitic poles exist: the buffer as an extracted netlist or the
transmission lines with many stages. PVL exhibits superior
results and does not show the significant approximation error of
the other two methods. To better judge the improvement from
replacing the Dominant Pole MOR with our proposed enhanced
PVL, we defined an improvement factor IFDP. where IFDP =
εProposed/εDP, and IFBT = εProposed/εBT . The proposed PVL
outperforms BT and DP especially when q ≪ n, hence we can
reduce the original system to lower orders with higher accuracy
than the other MOR methods. The average improvement factor
to DP for the four circuits is 25.93.

VI. FORMAL VERIFICATION USING HYBRID AUTOMATA

A significant advantage of the HA is the ability to employ
it for formal verification, which is essential in safety-critical



TABLE II: Comparison of relative approximation error of different MOR
methods

TL

Region εDP εBT εProposed IF∗
DP IF∗

BT

g1r1 0.1270 0.0192 0.0102 12.499 1.8882
g1r2 0.1321 0.0365 0.0103 12.812 3.5414
g2r1 0.0700 0.0264 0.0078 9.0150 3.3977

Average 0.1097 0.0274 0.0094 11.442 2.9424

Buf.

g1r1 0.9997 0.3841 0.2956 3.3820 1.2995
g2r1 140.91 0.8213 0.9996 140.96 0.8216

Average 70.955 0.6027 0.6476 72.173 1.0606

Bg

g1r1 2.9530 0.9115 0.2437 12.116 3.7398
g2r1 9.3164 0.9970 0.1557 59.833 6.4034

Average 6.1347 0.9543 0.1997 35.974 5.0716

LPF

g1r1 4.8E-08 2.5E-08 1.8E-08 2.6172 1.3947
g1r2 1.0E-07 1.2E-07 1.2E-07 0.8666 1.0000
g2r1 6.6E-09 0.0264 1.3E-09 5.1539 2.1E+07

Average 5.2E-08 0.0088 4.6E-08 2.8793 6.9E+06

Avg. 19.30 0.3983 0.2142 25.93 2.1E+06

IF∗
DP is the improvement factor from Dominant Pole MOR to the proposed

IF∗
BT is the improvement factor from BT MOR to the proposed

systems like electronics for autonomous driving. We can
verify HA with an reachability checker like CORA [12].
The piecewise linear description of the HA widened by the
underlying zonotopes of the formal verification tools can
perfectly enclose the behavior of the original circuit. The
generated models are more accurate with the proposed PVL-
based MOR method, especially the DC-gain (see Sec. V)
compared to the dominant pole MOR. Additionally, this can
lead to much tighter enclosures of reachable sets. For example,
we put a large input step exciting the opamp from Fig. 2.
The step starts from a set of starting points, and, therefore, it
consists of a set of steps. The resulting reachable region at the
output presented in Fig. 5 together with a forbidden region (red)
stemming from a Signal Temporal Logic (STL) statement [6]:
G(vnout > −2.0). This equation states that the output voltage
will never (G=globally) reach -2V and below. Finally, CORA
can prove this by conducting a reachability analysis, where
the result never touches that forbidden region. Other general
statements in STL including F for future, U for until and time
constraints can be also checked using CORA on these automata.
For the same reachability analysis of Fig. 5 we can define for
example (Vnout > −1.0)U[0.02,0.1](Vnout < −0.8) meaning that
the output voltage will reach values smaller than -0.8 in a given
time period. This statement successfully ensures a minimum
reaction time or slew rate.

VII. CONCLUSION

In this paper, we introduced a state space-based approach for
the order reduction of nonlinear analog circuits. We generated
a reduced dimensional Hybrid Automaton to utilize it for
formal verification methods. We integrated an improved PVL
method to reduce the computational complexity and achieve
processing speedup. Besides changing the kernel method in
that methodology, we adapt the subsequent generations of
invariants and guards of the HA to the new method. We chose
the PVL method for its low approximation error compared to
the modal and balanced Truncation MORs. The experimental
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Fig. 5: Reachability results of the second order low pass filter applying the
proposed PVL. The green and yellow regions are the reachable set for a given
input step. The red region is the forbidden region from the G(vnout > −2.0)
STL statement. The light yellow, purple and light blue regions are visualizing
the (Vnout >−1.0)U[0.02,0.1](Vnout <−0.8) STL statement for ensuring a certain
reaction time.

results of four nonlinear analog circuits confirm the superiority
of the proposed MOR approach. Compared to Dominant Pole
MOR, it achieves an average improvement factor of 25.93. A
reachability analysis shows tight and accurate bounds.
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