
Formally Verifying Analog Neural Networks With
Device Mismatch Variations

Yasmine Abu-Haeyeh†1, Thomas Bartelsmeier†2, Tobias Ladner†3,
Matthias Althoff3, Lars Hedrich1, Markus Olbrich2

1 Goethe University Frankfurt, Germany
{abu-haeyeh,hedrich}@em.uni-frankfurt.de

2 Leibniz University Hannover, Germany
{thomas.bartelsmeier,markus.olbrich}@ims.uni-hannover.de

3 Technical University of Munich, Germany
{tobias.ladner,althoff}@tum.de

Abstract—Training and running inference of large neural
networks comes with excessive cost and power consumption.
Thus, realizing these networks as analog circuits is an energy-
and area-efficient alternative. However, analog neural networks
suffer from inherent deviations within their circuits, requiring
extensive testing for their correct behavior under these deviations.
Unfortunately, tests based on Monte Carlo simulations are
extremely time- and resource-intensive. We present an alternative
approach to proving the correctness of the neural network using
formal neural network verification techniques and developing
a modeling methodology for these analog neural circuits. Our
experimental results compare two methods based on reachability
analysis showing their effectiveness by reducing the test time from
days to milliseconds. Thus, they offer a faster, more scalable
solution for verifying the correctness of analog neural circuits.

Index Terms—Analog neural networks, formal verification, set-
based computing, energy-efficient computing, AI hardware.

I. INTRODUCTION

Artificial neural networks can solve complex problems
in a wide range of applications [1]. However, conventional
neural networks under von Neumann architectures suffer from
excessive computational costs and power consumption [2]. In
contrast, analog-based inference systems provide an energy-
and area-efficient hardware solution and can effectively execute
neural networks without requiring the transmission of data from
memories to computing devices [3].

However, these analog circuits are vulnerable to
perturbations, such as process variations and device mismatch
variations, especially when operating in sub-threshold
regions [4]. Such vulnerabilities have also been discussed for
conventionally implemented neural networks in the context of
adversarial attacks [5]. Thus, the correct behavior under such
perturbations has to be tested. For analog neural networks
considered in this work, this is mainly done by extensive and
time-consuming Monte Carlo simulations [6].

A. Related Work

Analog neural networks have been developed for several
decades [3, 7]. We focus on works dealing with the
perturbations discussed above: Perturbation-aware design and
modeling of analog neural networks is a progressing research
field [6, 8, 9, 10]. For example, a MOS transistor model

†
Equal contribution, sorted alphabetically.

can capture the effect of device mismatch on an analog
neuromorphic chip [11], where the model parameters are
extracted from Monte Carlo simulations at the circuit level.
However, it has not been tested with a full network on real
applications. Calibrating an analog neural network processor
against process and mismatch variations using multi-resolution
weights can increase the inference robustness against such
perturbations [12], but the physical behavior of the analog
processor is not considered in this work.

Bounding perturbations in neural networks is also discussed
in the research field of formal neural network verification [13,
14]. In this field, one always considers a conventionally
implemented neural network, and thus only perturbations to
the input are usually considered. The exact output of neural
networks can then be computed using complete verifiers [15,
16]; however, it has been shown that this problem is NP-hard
for ReLU neural networks [16]. Thus, many verifiers enclose
the output of the network by relaxing the problem, where both
optimization-based approaches [17, 18, 19, 20] and approaches
based on reachability analysis [21, 22, 23, 24] are used. These
approaches also often use branch-and-bound strategies to deal
with the complexity of the problem [25, 26, 27, 28].

B. Contributions

This work presents a formal verification method for analog
neural networks. To summarize, our contributions are:

• A detailed description of our analog circuit design
combining analog neurons with digitally programmable
weights and biases.

• A system-level verification approach to model the non-
deterministic behavior of analog neural networks. In
particular, device mismatch variations are considered.

• We compare two approaches to formally enclose these
variations due to device mismatch, eliminating time-
consuming testing using Monte Carlo simulations of
the networks: The first approach offers a fast and
scalable computation of this enclosure, whereas the second
approach obtains tighter enclosures tailored to ReLU
activation at the cost of scalability.

• The proposed model and verification approaches
are showcased on real-world tasks, including image
recognition on the MNIST dataset.

II. PRELIMINARIES

A. Notation

We denote scalars and vectors by lowercase letters, matrices
by uppercase letters, and sets by calligraphic letters. The i-th
element of a vector v ∈ Rn is written as v(i). The element in the
i-th row and j-th column of a matrix A ∈ Rn×m is written as
A(i,j), the entire i-th row and j-th column are written as A(i,·)
and A(·,j), respectively. The concatenation of A with a matrix
B ∈ Rn×o is denoted by [A B] ∈ Rn×(m+o). We denote the
element-wise multiplication of two vectors by ⊙. The symbol 1
refers to the matrix with all ones of proper dimensions. Given
n ∈ N, we use the shorthand notation [n] = {1, . . . , n}. Let
S ⊂ Rn be a set and f : Rn → Rm be a function, then f(S) =
{f(x) | x ∈ S}. An interval with bounds a, b ∈ Rn is denoted
by [a, b], where a ≤ b holds element-wise.

B. Neural Networks

We consider feed-forward neural networks with ReLU
activation in this work:

Definition 1 (ReLU Neural Network [29, Sec. 5.1]). Given
an input x ∈ Rn0 and an output y ∈ Rnκ , a neural network
y = Φ(x) with κ ∈ N layers can be formulated as

h0 = x,

hk = Lk (hk−1) = ReLU(Wkhk−1 + bk), k ∈ [κ],

y = hκ,

with Lk : Rnk−1 → Rnk , Wk ∈ Rnk×nk−1 , and bk ∈ Rnk .

C. Set-Based Computing

We use continuous sets to verify neural networks. In
particular, we use zonotopes and affine arithmetic decision
diagrams (AADD) throughout this work. Let us start by
formally introducing zonotopes:

Definition 2 (Zonotope [30, Def. 1]). Given a center vector
c ∈ Rn and a generator matrix G ∈ Rn×p, a zonotope is
defined as

Z = ⟨c,G⟩Z =

{
c+

p∑
i=1

βiG(·,i)

∣∣∣∣∣ βi ∈ [−1, 1]

}
.

Let us also define the required operations on zonotopes:
Given Z = ⟨c,G⟩Z ⊂ Rn, A ∈ Rm×n, and b ∈ Rm, the
affine map is computed by [31, Eq. 2.1]

AZ + b = {Ax+ b |x ∈ Z} = ⟨Ac+ b, AG⟩Z . (1)

The Minkowski sum of a zonotope and an interval I = [l, u]
is computed by [31, Prop. 2.1 and Eq. 2.1]:

Z ⊕ I = {x1 + x2 | x1 ∈ Z, x2 ∈ I}
= ⟨c+ 1/2(u+ l), [G diag (1/2(u− l))]⟩Z .

(2)

The enclosing interval [l, u] ⊇ Z is computed by [31, Prop. 2.2]

l = c−∆g,
u = c+∆g,

with ∆g =

p∑
i=1

|G(·,i)|. (3)

Let us also formally introduce the affine arithmetic decision
diagrams (AADD) [32] representing a set as the union of
constrained affine forms, which are effectively (constrained)
zonotopes with n = 1 with shared noise symbols ϵ [33].

−2 −1 0 1
−0.5

0

0.5

1

1.5

Input x

O
ut

pu
t
y

(a)

−2 −1 0 1
−0.5

0

0.5

1

1.5

Input x

O
ut

pu
t
y

(b)

ReLU(x) x ≤ 0 x ≥ 0 Enclosure

Fig. 1: Enclosure of a ReLU neuron: Splitting into piecewise linear parts (a)
and using zonotopes (b).

Definition 3 (AADD [32]). An AADD is a binary decision tree
specified by the tuple (NI ,NL, vr, ET , EF) with internal nodes
NI , leaf nodes NL, root node vr ∈ NI ∪ NL, true-edges ET ,
false-edges EF , and it holds:

• Each internal node vi ∈ NI is associated with an affine
form AF i, which defines two constraints in the ϵ-space of
AF i such that AF i,t = {x ∈ AF i |x ≥ 0} and AF i,f =
AF i\AF i,t. An internal node has two leaving edges et ∈
ET and ef ∈ EF that lead to child nodes vt, vf ∈ NI∪NL,
where each constraint is further considered, respectively.

• Each leaf node vl ∈ NL contains an affine form AF l

that corresponds to a subset of the ϵ-hypercube, cut by
the conjunction of constraints on the path from vr to vl.

We refer to [32, 33] for the exact operations on AADDs.
Intuitively, as they are based on constrained affine forms, most
operations are analogous to the ones on zonotopes (1)-(3).
The only difference is its ability to impose constraints on the
noise symbols ϵ to model the conditions x ≥ 0 and x < 0,
respectively.

D. Formal Verification of Neural Networks

Uncertainties require us to evaluate a neural network (Def. 1)
set-based. In particular, for an input set X ⊂ Rn0 , the exact
output sets of each layer are given by

H∗
0 = X , H∗

k = Lk

(
H∗

k−1

)
, Y∗ = H∗

κ, k ∈ [κ]. (4)

Unfortunately, these exact sets are often not obtainable in
practice as the problem is NP-hard [16]. Thus, we enclose the
output of each layer:

Proposition 1 (Neural Network Enclosure [22, Sec. 3]). Given
an input set X ⊂ Rn0 to a neural network Φ, we obtain an
enclosure of the output set Y = enclose (Φ,X) ⊇ Y∗ by
iteratively enclosing the output of each layer:

Hk = enclose (Lk,Hk−1) ⊇ H∗
k, k ∈ [κ],

with H0 = X and Y = Hκ.

The linear part of a neural network (Def. 1) can be computed
exactly without additional outer approximations with zonotopes
using (1). However, the ReLU activation needs to be enclosed
if the input set to a layer intersects with both linear parts
(Fig. 1): Given the bounds of our input set, we can find a
polynomial approximating the activation function and bound
the approximation error (Fig. 1b), where the error is added

(i)

Σ

(ii) (iii)

Wk(i,j)

6-bit register w⟨0:5⟩

1/1

Vn

Vp

Iin

1/1

w⟨4⟩

1/2

w⟨3⟩

Vn

1/4

w⟨2⟩

1/8

w⟨1⟩

1/16 (W/L relations)

w⟨0⟩

Vdd

Vp2

w⟨5⟩

Iout

Fig. 2: Circuit schematic of the elements of the analog neuron circuit: (i)
Summation block based on Kirchhoff’s law, (ii) ReLU activation function, and
(iii) weight cells. The programming bits are stored in a 6-bit register. The ReLU
and weight blocks establish a binary weighted (w⟨0:4⟩) current mirror. The
bit w⟨5⟩ is used to realize negative weights by inverting the output current.

to the set using (2). In contrast, the exact output set can
be computed for networks with ReLU activation by splitting
the input set at 0 and considering each subset individually in
subsequent layers (Fig. 1a). The final output set is then obtained
by splitting the input set at each neuron while propagating
them through the entire network and computing the union of
the output sets. We maintain all of these subsets using an
AADD (Def. 3), where the leaf nodes correspond to subsets
in the output space of the network. In the worst case, this
approach based on AADDs suffers from an exponential number
of subsets in the number of ReLU neurons of the network [16].

III. ANALOG NEURAL NETWORK IMPLEMENTATION

In this section, we present our neural network inference
circuit based on a sub-threshold 130nm, 1.2V CMOS
design [34]. Our design combines analog neurons with digital
programmable weights and biases. All currents within the
circuit (input, output, and internal) are in the nA-range, making
it extremely energy-efficient.

A. Circuit Composition

The analog neuron is the main building block modeling a
combined ReLU activation with an appended linear layer. An
overview of the neuron circuit schematic is shown in Fig. 2. It
consists of three components: (i) a summation point and (ii) a
ReLU cell with (iii) a combined weight current mirror. First,
all weighted input currents and a bias current are summed
utilizing the basic Kirchhoff’s circuit laws [35]. Secondly, a
ReLU activation is applied by using the first part of a current
mirror in the subthreshold region to cut off negative currents.
We need two cascode transistors here to implement a low-
voltage cascode current mirror and ensure a constant voltage
at the summation nodes. Thirdly, the second part of the current
mirror scales the output current using a 5-bit weight w⟨0:4⟩
(see W/L relations in Fig. 2 (iii)). The sixth bit w⟨5⟩ is used for
the sign by inverting the current with another current mirror.
A bias circuit not shown in Fig. 2 maps an 8-bit quantized
programmable bias into an analog current. The circuit receives

x(1)

x(2)

x(1)

x(2)

Σ
1

−1

Σ
−1

1

−0

−0
Σ

1

1

−0

y(1)1

(a)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0

20

40

In
pu

t
[n

A
]

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

20

40

60

Time [s]

O
ut

pu
t

[n
A

]

x(1) x(2) y(1) Classification threshold

Fig. 3: Running example computing the XOR function: (a) Neural network and
(b) example in- and output. The main blocks of (a) are shown in Fig. 2 and
all weights and biases are rounded to their nearest integer.

input currents in the range of [−200nA, 200nA] and output
currents in the range of [0nA, 300nA].

B. Transferring TensorFlow Models

The network is trained off-chip using TensorFlow [36]. The
weights of the trained network are quantized to the six available
bits, where 50nA in the inference circuit corresponds to a value
of 1 in TensorFlow [34]. Please note that the circuit consists of
a combined ReLU and linear layer (Fig. 2). This requires us to
make adaptations to the input and the output of a TensorFlow
network of the form as defined in Def. 1: At the input of the
network, a slightly different circuit is used to scale the input
signal by the weight value without applying the ReLU function
to maintain the neural network functionality for negative input
signals. At the output of the network, an additional layer with
a weight of 1 is required to apply the final ReLU activation.

A simple example is depicted in Fig. 3a to demonstrate the
presented inference circuit. This neural network was trained to
mimic an XOR function. We indicate with dashed lines how this
two-layer TensorFlow network is parsed into a three-layered
circuit: In the first layer, the input currents x(1) and x(2) are
scaled by the weight W1. In the second layer, all weighted
currents and the bias current corresponding to b1 are summed
together, the ReLU activation is applied, and the output currents
are scaled according to W2. This is done analogously for the
final layer, where a weight of W3 = 1 is used at the end. The
input and output of the network are shown in Fig. 3b, where the

40 50 60
0

500

1,000

Output current [nA]

N
r.

of
sa

m
pl

es

(a)

40 50 60
0

50

100

150

Output current [nA]

N
r.

of
sa

m
pl

es

(b)

−200 0 200 400
0

200

400

Input current [nA]

O
ut

pu
t

cu
rr

en
t

[n
A

] (c)

Fig. 4: Monte Carlo analysis distribution of the neuron netlist to mismatch
variations: (a) mismatch in the input neuron, (b) mismatch in hidden and output
neurons, and (c) output of the neuron impacted by mismatch.

input signal changes every 10ms, and the output current quickly
expresses a correct classification using a threshold of 25nA.

IV. FORMALLY VERIFYING ANALOG NEURAL NETWORKS

To capture the effect of device mismatch variations on the
performance of each layer in the circuit, we formally verify the
output of the circuit under these variations.

A. Uncertainties in Analog Neural Networks

Based on the knowledge acquired from the behavior of
the analog neuron netlist explained in Sec. III, we develop
a mathematical model for the output of the neural network
considering these uncertainties: Monte Carlo simulations
(Fig. 4) show (a) a high device mismatch uncertainty at the
input neuron due to the adapted circuit design with more
transistors, but the network exhibits (b) a lower uncertainty
for hidden and output neurons. Additionally, please note that
(c) this uncertainty scales linearly with the output of the neuron
up to the saturation point at 300nA.

Based on these observations and the circuit design (Fig. 2),
we model the non-deterministic output ỹ of an analog neural
network for an input x as:

h̃0 = x,

h̃′
1 = L′

1(h̃0) = W1h̃0 + b1,

h̃1 = h̃′
1 ⊙ (1+ αϵ1),

h̃′
k′ = L′

k′(h̃k′−1) = Wk′ReLU(h̃k′−1) + bk′ ,

h̃k′ = h̃′
k′ ⊙ (1+ βϵk′), k′ ∈ {2, . . . , κ},

ỹ = h̃κ,

(5)

where the noise symbol ϵk ∈ [−1, 1]nk , k ∈ [κ], reflects
the model uncertainties of each neuron of that layer [37], the
parameter α ∈ R reflects the high sensitivity of the first layer
(k = 1) to the device mismatch, and the parameter β < α ∈ R
reflects the lower sensitivity of each subsequent layer (k > 1).
Please compare the computation of ỹ to the nominal output y
in Def. 1.

As the Monte Carlo simulations approximately follow a
normal distribution (Fig. 4a and 4b), we can estimate the
standard deviation

σ =
√
(
∑ns

i=1(ỹi − y)) / (ns − 1) (6)

given ns ∈ N Monte Carlo sample outputs ỹi, i ∈ [ns], with
mean y. This gives us the ability to formally enclose the outputs
using a third user-defined parameter γ ∈ R specifying the range
[y − γ, y + γ] we want to enclose, where e.g., setting γ = σ
encloses ∼68% of the uncertainty and γ = 3σ encloses ∼99%.

0.5 1 1.5 2 2.5

2

3

4

Output hk(1)

O
ut

pu
t

h k
(2

)

(a)

0.5 1 1.5 2 2.5

2

3

4

Output hk(1)

O
ut

pu
t

h k
(2

)

(b)

Input H̃k Exact enclosure
Mismatch uncertainty Zonotopic enclosure of uncertainty

Fig. 5: Enclosure of mismatch: (a) Exact and (b) using zonotopes.

Moreover, we say that the model is conformant if γ is
chosen large enough such that all measurements are contained.
Given γ, the internal parameters α and β are then minimized
using the generalized reduced gradient method [38].

B. Bounding the Uncertainties

Given our developed model, we can present the required
adaptations of Prop. 1 to enclose the mismatch uncertainty
given in (5) using set-based computing. We present
two approaches here based on zonotopes (Def. 2) and
AADDs (Def. 3), respectively:

1) Enclosure using zonotopes: For an input set H̃k−1 ⊂
Rnk−1 , we compute H̃′

k := enclose(L′
k, H̃k−1) using Prop. 1.

To also bound the added uncertainty in (5), let us first consider
the case k = 1: We need to compute H̃′

k ⊙ (1+αϵk) to obtain
the output of the entire layer H̃k. Unfortunately, this operation
cannot be computed exactly using zonotopes. Thus, we bound
the error by the worst-case uncertainty:

H̃′
k ⊙ (1 + αϵk) = H̃′

k ⊕ H̃′
kαϵk

⊆
(3)

H̃′
k ⊕ [lk, uk]αϵk

=
ϵk∈[−1,1] H̃′

k ⊕ [−αuk, αuk]
(2)
=: H̃k.

(7)

A comparison of this enclosure of the mismatch uncertainty
using zonotopes with the exact enclosure is shown in Fig. 5.
The same holds for k > 1 by replacing α with β (5). Please
note that this enclosure and the enclosure of the ReLU layer
induce outer approximations such that we can guarantee that at
least all points within the desired threshold γ are enclosed.

2) Enclosure using AADDs: Using our second approach,
each neuron of a network is modeled as an AADD (Def. 3) with
shared noise symbols across all neurons in the network. For a
layer k ∈ [κ] and neuron i ∈ [nk], this corresponds to the i-th
dimension of H̃k. While enclosing each layer k (Prop. 1), affine
transformations in linear layers can be computed using (1).
However, we are missing the implementation of the ReLU
activation. As ReLUs are piece-wise linear, we can split the
input set at 0 by adding a single constraint in the shared ϵ-
space of the AADDs for each case. Thus, the AADD is split
into true and false subtrees, which are maintained via the parent
node. Depending on the constraints in the AADD before the
operation is applied, the resulting AADD may be simplified to
mitigate the path explosion problem to an extent.

−0.5 0 0.5 1 1.5

setosa

versicolor

virginica

Prediction

L
ab

el

(a)

0 0.5 1 1.5

0

0.5

1

ỹ(2)
ỹ
(1

)

(b)

Samples γ = 3σ γ = 1σ

Fig. 6: Zonotopic enclosure of Iris example: (a) Projection of all dimensions
and (b) comparison of two most significant dimensions, where the samples are
computed using Monte Carlo simulations.

TABLE I: Time comparison and average enclosure of Monte Carlo simulations
of considered approaches.

Dataset Approach Time [s] Enclosure of simulations
γ = 1σ γ = 3σ

Iris
Cadence 7, 935.000 - -
Zonotope 0.265 88.66% 99.99%
AADD 0.181 87.83% 99.78%

MNIST
Cadence 162, 815.000 - -
Zonotope 0.763 93.71% 99.99%
AADD 0.444 93.69% 99.94%

To bound the added uncertainty in (5), we multiply the output
set H̃′

k(i) of each neuron with a new AADD consisting only of
a leaf node. For k = 1 and i ∈ [nk], this is given by

AF∗
k,i =

{
1 + αϵ∗k,i

∣∣ ϵ∗k,i ∈ [−1, 1]
}
. (8)

Analogous is done for k > 1 using β. Notably, we use
a different noise symbol ϵ∗k,i for each neuron such that the
uncertainties from different neurons are uncorrelated. Since the
AADD uses affine arithmetic for computations, the nonlinear
multiplication AF∗

k,i · H̃′
k(i) is not exact and is bounded by the

worst-case uncertainty analogous to (7) (Fig. 5).

V. EXPERIMENTAL RESULTS

In this section, we compare the effectiveness of our
approaches to Monte Carlo simulations. The Monte Carlo
simulations were run in Cadence Spectre [39] on a machine
equipped with two Intel Xeon E5-2683 v4 CPUs (16 cores
each) operating at default settings and 256 GB of RAM.
In contrast, both of our approaches were run on a home
computer with an AMD Ryzen 7 5800X3D CPU operating
at default settings and 32 GB of RAM. The first approach
based on zonotopes is written in MATLAB using the toolbox
CORA [40], and the second approach based on AADDs is
written in Kotlin using the jAADD library [41]. Our approaches
are evaluated on the Iris [42] and MNIST [43] datasets.

A. Iris

The Iris dataset [42] is a classification task with three classes:
Setosa, Versicolour, and Virginica. We trained a ReLU neural
network in TensorFlow with Adam optimizer with 4 inputs,
a fully connected layer with 8 hidden neurons, and an output
layer with 3 neurons representing the three classes. The network
achieves an accuracy of 92% on the test set consisting of 75
input patterns.

se
to

sa

setosa

ve
rs

ic
ol

or

versicolor

vi
rg

in
ic

a

virginica
(a)

26|0

0|1 18|4 0|4

0|1 15|6

True class

Pr
ed

ic
te

d
cl

as
s

setosa versicolor virginica
(b)

26|0

0|1 19|3 0|4

0|1 18|3

True class

Fig. 7: Confusion matrix for Iris using the (a) zonotope approach and (b) AADD
approach: Number of predictions with verifiably correct outputs (green). Wrong
predictions and predictions with too much variance are shown in yellow.

We evaluated our approaches to predict the output of the
inference circuit under mismatch variations and compared them
with the Monte Carlo simulations using γ = 1σ and γ = 3σ.
In Fig. 6, we show the results using the first approach based
on zonotopes on a single input pattern. The projection of all
dimensions is presented in Fig. 6a, where the bounds of the
computed output zonotope are shown as intervals for each class.
In Fig. 6b, we present the projected enclosure of the two most
significant dimensions, which matches our expectations for the
chosen γ value. In particular, γ = 3σ leads to an enclosure of
all 1, 000 Monte Carlo samples for this input pattern, whereas
choosing γ = 1σ encloses 91% of the samples. Please note
that the projections in Fig. 6 do not provide the full picture of
the higher-dimensional output and, thus, its enclosures.

The results on all 75 input patterns are shown in Tab. I
and Fig. 7: Fig. 7 shows two confusion matrices for both
approaches, respectively, where we color entries of the main
diagonal in green if the prediction is verifiably correct under
the mismatch variations and the considered threshold γ. The
prediction is verifiably correct if the lower bound of the
dimension corresponding to the true class is larger than the
upper bound of all other classes. Thus, in Fig. 6a, the prediction
is verifiably correct for γ = σ as the orange intervals do not
overlap, whereas the predictions can not be verified for γ = 3σ
as the blue intervals overlap. Whenever these intervals overlap,
or the prediction is wrong entirely, we color the respective cell
in Fig. 7 in yellow. The outputs can be verified for most input
patterns using both approaches, where the AADD method is
able to verify a few more input patterns (Fig. 7b).

We additionally show the required time to compute the
respective enclosures in Tab. I: While the computation of
the Monte Carlo simulations takes hours for Iris and even
days for MNIST on a server running the Cadence Spectre
simulator, the enclosures with either approach can be computed
in under a second on a home computer. This shows the
effectiveness of our approaches. However, it is important to
note that our proposed modeling approach requires running
Monte Carlo simulations once on a very small network with
two connected neuron circuits to extract the α and β parameters
based on the chosen threshold γ. This process on this simple

−2 0 2 4 6

0
1
2
3
4
5
6
7
8
9

Prediction

L
ab

el

(a)

0 2 4 6

−1

0

1

2

ỹ(5)

ỹ
(3

)

(b)

Samples γ = 3σ γ = 1σ

Fig. 8: Zonotopic enclosure of MNIST example: (a) Projection of all
dimensions and (b) comparison of two most significant dimensions.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

8|1

9|1

8|0

0|1 0|1 8|1 0|1

2|4

0|1 9|0 0|1

0|1 0|1 0|1 10|0 0|1

0|1 0|1 10|0 0|1

4|4

0|1 6|2

True class

Pr
ed

ic
te

d
cl

as
s

Fig. 9: Confusion matrix for MNIST: Number of predictions with verifiably
correct outputs (green). Wrong predictions and predictions with too much
variance are shown in yellow.

network requires 75.3s and the extracted parameters can be
reused on any network architecture based on dense layers and
ReLU activations. The developed model is then automatically
generated to be utilized for formal verification, which provides
a more efficient verification approach for deeper networks.

B. MNIST

For the MNIST dataset [43] consisting of handwritten digits,
we trained a ReLU neural network consisting of fully connected
layers with 10 hidden neurons and 10 outputs representing each
digit class. We use a reduced input size of 14 × 14 to reduce
the inference circuit complexity and power consumption while
maintaining a fairly good inference accuracy of 87% over 100
input patterns.

We again refer to Tab. I for the overall comparison of the
enclosures using our approaches as well as the heavily reduced
verification time, which shows the scalability of our approaches
compared to running Monte Carlo simulations as these take
days for this network. Additionally, we show the bounding

3 4 5 6 7

0

0.5

ỹ(7)

ỹ
(3

)

Samples
Zonotope
AADD
Subsets

Fig. 10: Comparison of enclosures using zonotopes (orange) and AADD for
the MNIST example: The computed subsets of AADD are shown in dashed
lines and its union in yellow.

boxes for each dimension as well as the projected enclosure of
the two most significant dimensions in Fig. 8. The confusion
matrix for the approach using zonotopes is shown in Fig. 9
with very similar results using AADD. Moreover, we provide
a detailed comparison of our two approaches in Fig. 10: Please
recall that the output set of the AADD is computed by the
union of the computed subsets in the leaf nodes of the AADD.
These subsets are shown in black dashed lines, and the union
is visualized in yellow. Due to the recursive splitting of the
AADD tree, it can obtain tighter results than the single output
set computed using zonotopes (orange). However, this is only
possible for relatively small networks as, in the worst case, the
number of leaf nodes is exponential in the number of neurons
of the network [16]. For the analog neural networks considered
in this work, the method is still feasible and better verification
results are obtained than with the zonotopes (Fig. 7 and 10).

VI. CONCLUSION

In this paper, we present an efficient formal verification
approach for analog neural networks with ReLU activation. We
have introduced two approaches based on set-based computing
to model the uncertainty in analog inference circuits due to
mismatch variations: Both approaches formally enclose the
output of each layer and also provably enclose the uncertainty
up to a desired threshold. By choosing the threshold large
enough so that all measurements are enclosed, the conformance
of the model can be shown. Whereas traditional testing of
the analog circuits can take days based on resource-intensive
Monte Carlo simulations, our approach shrinks the testing time
to under a second on a home computer. This is demonstrated
on two datasets and two different network architectures. Both
approaches realize a fast enclosure of the output of analog
neural networks under mismatch variations. As some input
patterns can not be verified, this indicates that the circuit
has to be improved to guarantee the correct output. As
an improvement in the circuit design can again be verified
quickly, our approach also heavily reduces the design cycle of
analog neural circuits. Future work will address extending our
proposed approach to different network architectures including
convolution layers and different activation functions.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by the
project FAI (No. 286525601) funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG).

REFERENCES

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad, “State-of-the-art in artificial neural network applications:
A survey,” Heliyon, vol. 4, no. 11, 2018.

[2] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for modern deep learning research,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 09, 2020, pp.
13 693–13 696.

[3] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239–255,
2010.

[4] P. G. Drennan and C. C. McAndrew, “Understanding mosfet mismatch
for analog design,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3,
pp. 450–456, 2003.

[5] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning
Representations, 2015.

[6] Z. Yan, X. S. Hu, and Y. Shi, “Computing-in-memory neural network
accelerators for safety-critical systems: Can small device variations
be disastrous?” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, 2022, pp. 1–9.

[7] T. Mohaidat and K. Khalil, “A survey on neural network hardware
accelerators,” IEEE Transactions on Artificial Intelligence, 2024.

[8] N. Ye, L. Cao, L. Yang, Z. Zhang, Z. Fang, Q. Gu, and G.-
Z. Yang, “Improving the robustness of analog deep neural networks
through a Bayes-optimized noise injection approach,” Communications
Engineering, vol. 2, no. 25, 2023.

[9] M. J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli, F. Odermatt,
N. Li, S. R. Nandakumar, P. Narayanan, H. Tsai et al., “Hardware-aware
training for large-scale and diverse deep learning inference workloads
using in-memory computing-based accelerators,” Nature communications,
vol. 14, no. 1, p. 5282, 2023.

[10] A. S. Rekhi, B. Zimmer, N. Nedovic, N. Liu, R. Venkatesan, M. Wang,
B. Khailany, W. J. Dally, and C. T. Gray, “Analog/mixed-signal hardware
error modeling for deep learning inference,” in Proceedings of the 56th
Annual Design Automation Conference 2019, 2019, pp. 1–6.

[11] B. V. Benjamin, R. L. Smith, and K. A. Boahen, “An analytical mos
device model with mismatch and temperature variation for subthreshold
circuits,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 70, no. 6, pp. 1826–1830, 2023.

[12] K. Jia, Z. Liu, Q. Wei, F. Qiao, X. Liu, Y. Yang, H. Fan, and H. Yang,
“Calibrating process variation at system level with in-situ low-precision
transfer learning for analog neural network processors,” in Proceedings
of the 55th Annual Design Automation Conference, 2018, pp. 1–6.

[13] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The fourth international
verification of neural networks competition (VNN-COMP 2023):
Summary and results,” in arXiv preprint arXiv:2312.16760, 2023.

[14] D. Manzanas Lopez, M. Althoff, M. Forets, T. T. Johnson, T. Ladner,
and C. Schilling, “ARCH-COMP23 category report: Artificial intelligence
and neural network control systems (AINNCS) for continuous and hybrid
systems plants,” in EPiC Series in Computing, 2023.

[15] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of
deep neural networks,” in International Conference on Computer Aided
Verification, 2017, pp. 3–29.

[16] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification, 2017, pp.
97–117.

[17] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
in Advances in Neural Information Processing Systems, vol. 31, 2018.

[18] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. L. Dill, M. J. Kochenderfer, and
C. Barret, “The Marabou framework for verification and analysis of
deep neural networks,” in International Conference on Computer Aided
Verification, 2019, pp. 443–452.

[19] P. Henriksen and A. Lomuscio, “Efficient neural network verification via
adaptive refinement and adversarial search,” in European Conference on
Artificial Intelligence, 2020, vol. 325, pp. 2513–2520.

[20] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain for
certifying neural networks,” in Proceedings of the ACM on Programming
Languages, vol. 3, 2019, pp. 1–30.

[21] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “AI2: Safety and robustness certification of neural networks
with abstract interpretation,” in IEEE Symposium on Security and Privacy,
2018, pp. 3–18.

[22] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast
and effective robustness certification,” Advances in Neural Information

Processing Systems, vol. 31, 2018.
[23] D. M. Lopez, S. W. Choi, H.-D. Tran, and T. T. Johnson, “NNV 2.0:

The neural network verification tool,” in International Conference on
Computer Aided Verification, 2023, pp. 397–412.

[24] T. Ladner and M. Althoff, “Automatic abstraction refinement in neural
network verification using sensitivity analysis,” in Proceedings of the
26th ACM International Conference on Hybrid Systems: Computation
and Control, 2023, pp. 1–13.

[25] R. Bunel, I. Turkaslan, P. Torr, M. P. Kumar, J. Lu, and P. Kohli, “Branch
and bound for piecewise linear neural network verification,” in Journal
of Machine Learning Research, vol. 21, 2020, pp. 1–39.

[26] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z.
Kolter, “Beta-CROWN: Efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification,” in
Advances in Neural Information Processing Systems, vol. 34, 2021.

[27] C. Ferrari, M. N. Mueller, N. Jovanović, and M. Vechev, “Complete
verification via multi-neuron relaxation guided branch-and-bound,” in
International Conference on Learning Representations, 2022.

[28] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation
and verification for multilayer neural networks,” in IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, 2018, pp. 5777–5783.

[29] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning, 2006, vol. 4.

[30] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in
International Workshop on Hybrid Systems: Computation and Control,
2005, pp. 291–305.

[31] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Ph.D. dissertation, Technical University
of Munich, 2010.

[32] C. Zivkovic, C. Grimm, M. Olbrich, O. Scharf, and E. Barke,
“Hierarchical verification of ams systems with affine arithmetic decision
diagrams,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 10, pp. 1785–1798, 2018.

[33] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[34] F. Aul, N. Katsaouni, L. Krischker, S. Schmalhofer, M. H. Schulz,
and L. Hedrich, “Schematic generation of programmable analog neural
networks for signal proccessing,” in International Conference on SMACD
and 16th Conference on PRIME, 2021, pp. 1–4.

[35] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella,
“Analog architectures for neural network acceleration based on non-
volatile memory,” Applied Physics Reviews, vol. 7, no. 3, 2020.

[36] M. Abadi, A. Agarwal, P. Barham, and et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. [Online]. Available:
https://www.tensorflow.org/

[37] J. Stolfi and L. H. de Figueiredo, “An introduction to affine arithmetic,”
Trends in Computational and Applied Mathematics, vol. 4, no. 3, pp.
297–312, 2003.

[38] L. S. Lasdon, R. L. Fox, and M. W. Ratner, “Nonlinear optimization
using the generalized reduced gradient method,” Revue française
d’automatique, informatique, recherche opérationnelle. Recherche
opérationnelle, vol. 8, no. V3, pp. 73–103, 1974.

[39] I. Cadence Design Systems, “Cadence virtuoso spectre simulator
datasheet,” www.cadence.com, 2024.

[40] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015, pp.
120–151.

[41] C. Grimm and C. Zivkovic, “jaadd,” https://github.com/tukcps/jAADD,
2017, accessed: 2024-09-10.

[42] R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1936.
[43] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database,”

http://yann.lecun.com/exdb/mnist, 2010.

https://www.tensorflow.org/

	Introduction
	Related Work
	Contributions

	Preliminaries
	Notation
	Neural Networks
	Set-Based Computing
	Formal Verification of Neural Networks

	Analog Neural Network Implementation
	Circuit Composition
	Transferring TensorFlow Models

	Formally Verifying Analog Neural Networks
	Uncertainties in Analog Neural Networks
	Bounding the Uncertainties
	Enclosure using zonotopes
	Enclosure using AADDs

	Experimental Results
	Iris
	MNIST

	Conclusion

